直線y=2x+3與拋物線y=ax2交于A、B兩點(diǎn),已知A點(diǎn)的橫坐標(biāo)是3,求A、B兩點(diǎn)的坐標(biāo)及拋物線的解析式.

解:∵直線y=2x+3與拋物線y=ax2交于A、B兩點(diǎn)且A點(diǎn)的橫坐標(biāo)是3,
∴點(diǎn)A的縱坐標(biāo)y=2×3+3=9,
∴點(diǎn)A的坐標(biāo)為(3,9),
將點(diǎn)A的坐標(biāo)代入y=ax2得:a=1,
∴拋物線的解析式為y=x2

解得:
∴點(diǎn)B的坐標(biāo)為:(-1,1).
分析:首先根據(jù)點(diǎn)A的橫坐標(biāo)求得其縱坐標(biāo),然后代入拋物線求得其解析式,然后聯(lián)立組成方程組后求交點(diǎn)坐標(biāo)即可.
點(diǎn)評:本題考查了二次函數(shù)的性質(zhì),重點(diǎn)是知道如何求兩圖象的交點(diǎn)坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、直線y=2x-1與拋物線y=ax2只有一個(gè)交點(diǎn)為(1,1),則方程ax2-2x+1=0的解為
x=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)先化簡,再求值:
(x+2y)2-(x+y)(3x-y)-5y2
2x
,其中x=-2,y=
1
2
;
(2)求直線y=2x+1與拋物線y=3x2+3x-1的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過原點(diǎn)O和x軸上另一點(diǎn)A(4,0),頂點(diǎn)的縱坐標(biāo)是-1,拋物線的對稱軸與x軸交于點(diǎn)C,直線y=-2x-1與拋物線交于一點(diǎn)B(-2,m),且與y軸、拋物線的對稱軸分別交于點(diǎn)D、E.
精英家教網(wǎng)(1)求m的值與拋物線的解析式.
(2)試判斷△BCE的形狀并說明理由.
(3)若P(x,y)是該拋物線上的一個(gè)動(dòng)點(diǎn),是否存在這樣的點(diǎn)P,使得PB=PE?若存在,試求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx經(jīng)過圓點(diǎn)O和x軸上的另一點(diǎn)A,它的對稱軸x=2與x軸交于點(diǎn)C,直線y=-2x-1與拋物線y=a2+bx交于點(diǎn)B(-2,m),且y軸、直線x=2分別交于點(diǎn)D、E.
(1)求m的值及該拋物線對應(yīng)的函數(shù)解析式;
(2)試判斷△ECB的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•西寧)已知二次函數(shù)y=ax2+bx+c的圖象拋物線G經(jīng)過(-5,0),(0,
52
),(1,6)三點(diǎn),直線l的解析式為y=2x-3
(1)求拋物線G的函數(shù)解析式;
(2)求證:拋物線G與直線L無公共點(diǎn);
(3)若與l平行的直線y=2x+m與拋物線G只有一個(gè)公共點(diǎn)P,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案