【題目】如圖,四邊形ABCD是正方形,E,F(xiàn)分別是DCCB的延長線上的點,且DE=BF,連接AE,AF,EF.

(1)求證:ADE≌△ABF;

(2)填空:ABF可以由ADE繞旋轉中心____點,按順時針方向旋轉___度得到;

(3)BC=8,DE=2,求AEF的面積.

【答案】 (1)見解析;(2)A,90;(3) 34.

【解析】

(1)根據(jù)正方形的性質得,,然后利用”易證得;

(2)由于,則,即,根據(jù)旋轉的定義可得到可以由繞旋轉中心點,按順時針方向旋轉得到;

(3)先利用勾股定理可計算出,再根據(jù)可以由繞旋轉中心點,按順時針方向旋轉得到,,然后根據(jù)直角三角形的面積公式計算即可.

解:(1)∵四邊形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,

而F是CB的延長線上的點,∴∠ABF=∠D=90°.

又∵AB=AD,DE=BF,∴△ADE≌△ABF(SAS);

(2) ,

,即

可以由繞旋轉中心點,按順時針方向旋轉得到.

故答案為:、.

(3)∵BC=8,∴AD=8,在Rt△ADE中,DE=2,AD=8,

∴AE==2,

∵△ABF可以由△ADE繞旋轉中心A點,按順時針方向旋轉90°得到,

∴AE=AF,∠EAF=90°.∴△AEF的面積=AE2×4×17=34.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點C落在DP(PAB中點)所在的直線上,得到經(jīng)過點D的折痕DE,則∠DEC的大小為( )

A. 78° B. 45° C. 60° D. 75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形構成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標系,拋物線最高點D到墻面OB的水平距離為6m時,隧道最高點D距離地面10m.

(1)求該拋物線的函數(shù)關系式;

(2)一輛貨運汽車載一長方體集裝箱后寬為4m,高為6m,如果隧道內設雙向行車道,那么這輛貨車能否安全通過?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某無人機于空中處探測到目標的俯角分別是,此時無人機的飛行高度,隨后無人機從處繼續(xù)水平飛行m到達處.

1之間的距離

2求從無人機上看目標的俯角的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用適當方法解下列方程:

1)(x4281=0;

23xx3=2x3);

3.

4)解方程:2x210x3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點FDE的延長線上,∠BFE=90°,連接AF、CF,CFAB交于G.有以下結論:

①AE=BC

②AF=CF

③BF2=FGFC

④EGAE=BGAB

其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=x經(jīng)過點A,作ABx軸于點B,將ABO繞點B逆時針旋轉60°得到CBD,若點B的坐標為(2,0),則點C的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,大家一起研究三角形中位線定理的證明,小麗和小亮在學習思考后各自嘗試了一種輔助線,如圖1,圖2所示,其中輔助線做法能夠用來證明三角形中位線定理的是(

A. 小麗和小亮的輔助線做法都可以

B. 小麗和小亮的輔助線做法都不可以

C. 小麗的輔助線做法可以,小亮的不可以

D. 小亮的輔助線做法可以,小麗的不可以

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的和點P,給出如下定義:如果在上存在一個動點Q,使得是以CQ為底的等腰三角形,且滿足底角,那么就稱點P關聯(lián)點

的半徑為2時,

在點中,關聯(lián)點______;

如果點P在射線上,且P關聯(lián)點,求點P的橫坐標m的取值范圍.

的圓心Cx軸上,半徑為4,直線與兩坐標軸交于AB,如果線段AB上的點都是關聯(lián)點,直接寫出圓心C的橫坐標n的取值范圍.

查看答案和解析>>

同步練習冊答案