【題目】如圖,直角三角形ABC的直角邊AB=6,BC=8,將直角三角形ABC沿邊BC的方向平移到三角形DEF的位置,DEAC于點G,BE=2,三角形CEG的面積為13.5,下列結(jié)論:

①三角形ABC平移的距離是4; ②EG=4.5;

③AD∥CF; ④四邊形ADFC的面積為6

其中正確的結(jié)論是( )

A. ①② B. ②③ C. ③④ D. ②④

【答案】B

【解析】分析:(1)對應(yīng)線段的長度即是平移的距離;(2)根據(jù)EC的長和△CEG的面積求EG;(3)平移前后,對應(yīng)點的連線平行且相等;(4)根據(jù)平行四邊形的面積公式求.

詳解:(1)因為點B,E是對應(yīng)點,且BE=2,所以△ABC平行的距離是2,則①錯誤;

②根據(jù)題意得,13.5×2=(8-2)EG,解得EG=4.5,則②正確;

因為A,D是對應(yīng)點,C,F是對應(yīng)點,所以ADCF,則③正確;

平行四邊形ADFC的面積為AB·CFAB·BE=6×2=12,則④錯誤.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件中是不可能的是(

A.小明從一串鑰匙中隨便選擇一把,一次就能打開門

B.張華同學(xué)數(shù)學(xué)成績是100

C.一個數(shù)與它的相反數(shù)的和是0

D.兩條線段可以組成一個三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,淇淇的爸爸去參加一個聚會,淇淇坐在汽車上用所學(xué)知識繪制了一張反映汽車速度與時間的關(guān)系圖,第二天,淇淇拿著這張圖給同學(xué)看,并向同學(xué)提出如下問題,你能回答嗎?

(1)在上述變化過程中,自變量是什么?因變量是什么?

(2)汽車從出發(fā)到最后停止共經(jīng)過了多長時間?它的最高時速是多少?

(3)汽車在哪段時間保持勻速行駛?速度是多少?

(4)用語言大致描述這輛汽車的行駛情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把分子為1的分?jǐn)?shù)叫做單位分?jǐn)?shù),如, , ,任何一個單位分?jǐn)?shù)都可以拆分成兩個不同的單位分?jǐn)?shù)的和,如, , ,

1)根據(jù)對上述式子的觀察,你會發(fā)現(xiàn),則a=________,b=________;

2)進一步思考,單位分?jǐn)?shù)n是不小于2的正整數(shù)),則x=________(用n的代數(shù)式表示)

3)計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線OB是一次函數(shù)y=2x的圖象,點A的坐標(biāo)是(0,2),點C在直線OB上且△ACO為等腰三角形,求C點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果商行計劃購進A、B兩種水果共200箱,這兩種水果的進價、售價如下表所示:

價格
類型

進價(元/箱)

售價(元/箱)

A

60

70

B

40

55


(1)若該商行進貸款為1萬元,則兩種水果各購進多少箱?
(2)若商行規(guī)定A種水果進貨箱數(shù)不低于B種水果進貨箱數(shù)的 ,應(yīng)怎樣進貨才能使這批水果售完后商行獲利最多?此時利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市2009年元旦的最高氣溫為12℃,最低氣溫為-2℃,那么這天的最高氣溫比最低氣溫高 ( )

A.14℃B.10℃C.14℃D.10℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解題: 學(xué)習(xí)了二次根式后,你會發(fā)現(xiàn)一些含有根號的式子可以寫成另一個式子的平方,如3+2 =1+2 我們來進行以下的探索:

設(shè)a+b=m+n2其中a,b,m,n都是正整數(shù)),則有a+b=m2+2n2+2mn,a=m+2n2 , b=2mn 這樣就得出了把類似a+b的式子化為平方式的方法

請仿照上述方法探索并解決下列問題:

1)當(dāng)a,b,m,n都為正整數(shù)時,若ab=mn2 用含m,n的式子分別表示ab,得a=________,b=________;

2)利用上述方法,找一組正整數(shù)ab,m,n填空:________=_________2

3a4=mn2a,m,n都為正整數(shù),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角△ABC中,∠ACB90°,B60°AD,CE分別是∠BAC和∠BCA的平分線,ADCE相交于點F.

(1)求∠EFD的度數(shù);

(2)判斷FEFD之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案