【題目】陽泉同學(xué)參加周末社會實踐活動,到富樂花鄉(xiāng)蔬菜大棚中收集到20株西紅柿秧上小西紅柿的個數(shù):32、39、45、55、60、54、 60、28、56、41、51、36、44、46、40、53、37、47、45、46.

(1)10株西紅柿秧上小西紅柿個數(shù)的平均數(shù)是多少?中位數(shù)是多少?眾數(shù)是多少?

(2)若對這20個數(shù)按組距為8進行分組,請補全頻數(shù)分布表及頻數(shù)分布直方圖

個數(shù)分組

28≤x<36

36≤x<44

44≤x<52

52≤x<60

60≤x<68

頻數(shù)

2

   

   

   

2

(3)通過頻數(shù)分布直方圖試分析此大棚中西紅柿的長勢.

【答案】(1)47,49.5,60;(2)5,7,4;補圖見解析;(3)見解析.

【解析】

(1)根據(jù)平均數(shù)的計算公式進行計算求出平均數(shù),再根據(jù)中位數(shù)和眾數(shù)的定義即可得出答案;

(2)根據(jù)所給出的數(shù)據(jù)分別得出各段的頻數(shù),從而補全統(tǒng)計圖;

(3)根據(jù)頻數(shù)分布直方圖所給出的數(shù)據(jù)分別進行分析即可.

(1)10株西紅柿秧上小西紅柿個數(shù)的平均數(shù)是(32+39+45+55+60+54+60+28+56+41)÷10=47;

把這些數(shù)據(jù)從小到大排列:28、32、39、41、45、54、55、56、60、60,

最中間的數(shù)是(45+54)÷2=49.5,

則中位數(shù)是49.5;

60出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是60;

故答案為:47,49.5,60;

(2)根據(jù)題意填表如下:

個數(shù)分組

28≤x<36

36≤x<44

44≤x<52

52≤x<60

60≤x<68

頻數(shù)

2

5

7

4

2

補圖如下:

故答案為:5,7,4;

(3)此大棚的西紅柿長勢普遍較好,最少都有28個;

西紅柿個數(shù)最集中的株數(shù)在第三組,共7株;

西紅柿的個數(shù)分布合理,中間多,兩端少.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個圖案中,是軸對稱圖形的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是O的直徑,點C、D在O上,點E在O外,EAC=B=60°.

(1)求ADC的度數(shù);

(2)求證:AE是O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個盒子里有完全相同的三個小球,球上分別標(biāo)上數(shù)字-1、1、2.隨機摸出一個小球(不放回),其數(shù)字記為p,再隨機摸出另一個小球,其數(shù)字記為q,則p,q使關(guān)于x的方程x2+px+q=0有實數(shù)根的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雅禮集團某學(xué)校教學(xué)樓需要在規(guī)定時間內(nèi)建造完成,以備迎接新學(xué)期的開學(xué),在工程招標(biāo)時,接到甲、乙兩個工程隊的投標(biāo)書如下:(部分信息)

學(xué)校后勤處提出兩個方案:①由甲工程隊獨施工;②由乙工程隊單獨施工;

校團委學(xué)生代表小組根據(jù)甲、乙兩隊的投標(biāo)書測算及工期安排,提出了新的方案:

③若甲乙兩隊合做4天,余下的工程由乙隊單獨做也正好如期完成.

試問:(1)學(xué)校規(guī)定的期限是多少天?

(2)在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】汽車產(chǎn)業(yè)的發(fā)展,有效促進我國現(xiàn)代化建設(shè).某汽車銷售公司2016年盈利1500萬元,到2018年盈利2160萬元,且從2016年到2018年,每年盈利的年增長率相同.

1)求每年盈利的年增長率;

2)若該公司盈利的年增長率繼續(xù)保持不變,那么2019年該公司盈利能否達(dá)到2500萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐:

問題發(fā)現(xiàn):學(xué)完四邊形的有關(guān)知識后,創(chuàng)新小組的同學(xué)進一步研究特殊的四邊形,發(fā)現(xiàn)了一個結(jié)論.如圖1,已知四邊形是正方形,根據(jù)勾股定理和正方形的性質(zhì),很容易能夠證明

問題探究:

1)如圖2,已知四邊形是矩形,若,則的值是 ;的值是 ;

2)如圖3,已知四邊形是菱形,證明:

拓廣探索:

3)智慧小組看了創(chuàng)新小組交流后,提出了一個猜想,如圖4,在中,,你認(rèn)為這個猜想正確嗎?請說明理由;

4)請用文字語言敘述中得出的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+x+c的頂點是正方形ABCO的邊AB的中點,點A,C在坐標(biāo)軸上,拋物線分別與AO,BC交于D,E兩點,將拋物線向下平移1個單位長度得到如圖所示的陰影部分.現(xiàn)隨機向該正方形區(qū)域投擲一枚小針,則針尖落在陰影部分的概率P=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直徑為 10cm 的⊙O 中,兩條弦 AB,CD 分別位于圓心的異側(cè),ABCD,且,若 AB=8cm,則 CD 的長為_____cm

查看答案和解析>>

同步練習(xí)冊答案