【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.如果點P在線段BC上以3cm/s的速度由點B向C點運動,同時,點Q在線段CA上由點C向A點運動.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由.
(2)若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
【答案】(1)全等,理由見解析;(2)cm/s
【解析】
試題(1)經(jīng)過1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即據(jù)SAS可證得△BPD≌△CQP.
(2)可設(shè)點Q的運動速度為x(x≠3)cm/s,經(jīng)過ts△BPD與△CQP全等,則可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,據(jù)(1)同理可得當(dāng)BD=PC,BP=CQ或BD=CQ,BP=PC時兩三角形全等,求x的解即可.
解:(1)經(jīng)過1秒后,PB=3cm,PC=5cm,CQ=3cm,
∵△ABC中,AB=AC,
∴在△BPD和△CQP中,
,
∴△BPD≌△CQP(SAS).
(2)設(shè)點Q的運動速度為x(x≠3)cm/s,經(jīng)過ts△BPD與△CQP全等;則可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,
∵AB=AC,
∴∠B=∠C,
根據(jù)全等三角形的判定定理SAS可知,有兩種情況:①當(dāng)BD=PC,BP=CQ時,②當(dāng)BD=CQ,BP=PC時,兩三角形全等;
①當(dāng)BD=PC且BP=CQ時,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情況;
②BD=CQ,BP=PC時,5=xt且3t=8﹣3t,解得:x=;
故若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為cm/s時,能夠使△BPD與△CQP全等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點A,與y軸正半軸交于點B,且OA=OB.
(1)求b+c的值;
(2)若點C在拋物線上,且四邊形OABC是平行四邊形,求拋物線的解析式;
(3)在(2)條件下,點P(不與A,C重合)是拋物線上的一點,點M是y軸上一點,當(dāng)△BPM是等腰直角三角形時,直接寫出點M的坐標(biāo)..
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是( ).
①作出AD的依據(jù)是SAS;②∠ADC=60°
③點D在AB的中垂線上;④S△DAC:S△ABD=1:2.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C、D為矩形的4個頂點,AB=16cm,BC=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3 cm/s的速度向點B移動,一直到達(dá)點B為止;點Q以2 cm/s的速度向點D移動。經(jīng)過長時間P、Q兩點之間的距離是10 cm?(8′)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的關(guān)系圖象,其中M為曲線部分的最低點,則△ABC的面積是( 。
A.12B.12C.6D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車行駛時的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程(千米)的函數(shù)圖象.
(1)根據(jù)圖象,直接寫出汽車行駛400千米時,油箱內(nèi)的剩余油量,并計算加滿油時油箱的油量;
(2)求關(guān)于的函數(shù)關(guān)系式,并計算該汽車在剩余油量5升時,已行駛的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的正方形網(wǎng)格中,每個小正方形的邊長均為1.,,,均在格點上,完成下列問題:
(1)四邊形周長是 ;
(2)四邊形面積是 ;
(3)求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(m,6),B(3,n)兩點.
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com