【題目】用適當?shù)姆椒ń夥匠?/span>
(1)x2﹣3x=0
(2)x2+4x﹣5=0
(3)3x2+2=1﹣4x
【答案】(1)x1=0,x2=3;(2)x1=﹣5,x2=1;(3),x2=﹣1.
【解析】
(1)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;
(2)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;
(3)整理后分解因式,即可得出兩個一元一次方程,求出方程的解即可.
(1)x2﹣3x=0,
x(x﹣3)=0,
x=0,x﹣3=0,
x1=0,x2=3;
(2)x2+4x﹣5=0,
(x+5)(x﹣1)=0,
x+5=0,x﹣1=0,
x1=﹣5,x2=1;
(3)3x2+2=1﹣4x,
3x2+4x+1=0,
(3x+1)(x+1)=0,
3x+1=0,x+1=0,
x1=,x2=﹣1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為坐標原點,點A(﹣1,5)和點B(m,﹣1)均在反比例函數(shù)圖象上
(1)求m,k的值;
(2)當x滿足什么條件時,﹣x+4>﹣;
(3)P為y軸上一點,若△ABP的面積是△ABO面積的2倍,直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中拋物線y=(x+1)(x﹣3)與x軸相交于A、B兩點,若在拋物線上有且只有三個不同的點C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面積都等于m,則m的值是( )
A. 6 B. 8 C. 12 D. 16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BC的垂直平分線分別交BC,AC于點D,E,BE交AD于點F,AB=AD.
(1)判斷△FDB與△ABC是否相似,并說明理由.
(2)AF與DF相等嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“十九大”報告提出了我國將加大治理環(huán)境污染的力度,還我青山綠水,其中霧霾天氣讓環(huán)保和健康問題成為焦點,為了調(diào)查學生對霧霾天氣知識的了解程度,某校在全校學生中抽取400名同學做了一次調(diào)查,根據(jù)調(diào)查統(tǒng)計結果,繪制了不完整的一種統(tǒng)計圖表.
對霧霾了解程度的統(tǒng)計表
對霧霾的了解程度 | 百分比 |
A.非常了解 | 5% |
B.比較了解 | m |
C.基本了解 | 45% |
D.不了解 | n |
請結合統(tǒng)計圖表,回答下列問題:
(1)統(tǒng)計表中:m= ,n= ;
(2)請在圖1中補全條形統(tǒng)計圖;
(3)請問在圖2所示的扇形統(tǒng)計圖中,D部分扇形所對應的圓心角是多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】同學們,在我們進入高中以后,將還會學到下面三角函數(shù)公式:
sin (α-β)=sinαcosβ-cosαsinβ,
cos (α-β)=cosαcosβ+sinαsinβ
例:sin 15°=sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30°=
(1)試仿照例題,求出cos 15°的準確值;
(2)我們知道,tanα=,試求出tan 15°的準確值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】去學校食堂就餐,經(jīng)常會在一個買菜窗口前等待,經(jīng)調(diào)查發(fā)現(xiàn),同學的舒適度指數(shù)y與等時間x(分)之間滿足反比例函數(shù)關系,如下表:
等待時間x | 1 | 2 | 5 | 10 | 20 |
舒適度指數(shù)y | 100 | 50 | 20 | 10 | 5 |
已知學生等待時間不超過30分鐘
(1)求y與x的函數(shù)關系式,并寫出自變量x的取值范圍.
(2)若等待時間8分鐘時,求舒適度的值;
(3)舒適度指數(shù)不低于10時,同學才會感到舒適.請說明,作為食堂的管理員,讓每個在窗口買菜的同學最多等待多少時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx的頂點為C(1,),P是拋物線上位于第一象限內(nèi)的一點,直線OP交該拋物線對稱軸于點B,直線CP交x軸于點A.
(1)求該拋物線的表達式;
(2)如果點P的橫坐標為m,試用m的代數(shù)式表示線段BC的長;
(3)如果△ABP的面積等于△ABC的面積,求點P坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與軸的一個交點坐標為(-1,0),其部分圖象如圖所示,下列結論:
① 4ac<b2;② 方程ax2+bx+c=0的兩個根是;③ 3a+c>0;④ 當y>0時,x的取值范圍是-1≤x<3;⑤ 當x<0時,y隨x增大而增大;
其中結論正確有__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com