【題目】用適當?shù)姆椒ń夥匠?/span>

1x23x0

2x2+4x50

33x2+214x

【答案】1x10,x23;(2x1=﹣5x21;(3,x2=﹣1

【解析】

1)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;

2)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;

3)整理后分解因式,即可得出兩個一元一次方程,求出方程的解即可.

1x23x0,

xx3)=0,

x0x30,

x10,x23;

2x2+4x50

x+5)(x1)=0,

x+50,x10,

x1=﹣5,x21;

33x2+214x,

3x2+4x+10,

3x+1)(x+1)=0,

3x+10,x+10,

x1,x2=﹣1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為坐標原點,點A(﹣1,5)和點B(m,﹣1)均在反比例函數(shù)圖象上

(1)求m,k的值;

(2)當x滿足什么條件時,﹣x+4>﹣;

(3)P為y軸上一點,若△ABP的面積是△ABO面積的2倍,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中拋物線y=(x+1)(x3)與x軸相交于AB兩點,若在拋物線上有且只有三個不同的點C1、C2C3,使得ABC1、ABC2ABC3的面積都等于m,則m的值是(  )

A. 6 B. 8 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BC的垂直平分線分別交BC,AC于點DEBEAD于點F,AB=AD

1)判斷FDBABC是否相似,并說明理由.

2AFDF相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】十九大報告提出了我國將加大治理環(huán)境污染的力度,還我青山綠水,其中霧霾天氣讓環(huán)保和健康問題成為焦點,為了調(diào)查學生對霧霾天氣知識的了解程度,某校在全校學生中抽取400名同學做了一次調(diào)查,根據(jù)調(diào)查統(tǒng)計結果,繪制了不完整的一種統(tǒng)計圖表.

對霧霾了解程度的統(tǒng)計表

對霧霾的了解程度

百分比

A.非常了解

5%

B.比較了解

m

C.基本了解

45%

D.不了解

n

請結合統(tǒng)計圖表,回答下列問題:

1)統(tǒng)計表中:m   n   ;

2)請在圖1中補全條形統(tǒng)計圖;

3)請問在圖2所示的扇形統(tǒng)計圖中,D部分扇形所對應的圓心角是多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同學們,在我們進入高中以后,將還會學到下面三角函數(shù)公式:

sin (αβ)sinαcosβcosαsinβ,

cos (αβ)cosαcosβsinαsinβ

例:sin 15°sin (45°30°)sin 45°cos 30°cos 45°sin 30°

(1)試仿照例題,求出cos 15°的準確值;

(2)我們知道,tanα,試求出tan 15°的準確值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】去學校食堂就餐,經(jīng)常會在一個買菜窗口前等待,經(jīng)調(diào)查發(fā)現(xiàn),同學的舒適度指數(shù)y與等時間x(分)之間滿足反比例函數(shù)關系,如下表:

等待時間x

1

2

5

10

20

舒適度指數(shù)y

100

50

20

10

5

已知學生等待時間不超過30分鐘

(1)求y與x的函數(shù)關系式,并寫出自變量x的取值范圍.

(2)若等待時間8分鐘時,求舒適度的值;

(3)舒適度指數(shù)不低于10時,同學才會感到舒適.請說明,作為食堂的管理員,讓每個在窗口買菜的同學最多等待多少時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx的頂點為C(1,),P是拋物線上位于第一象限內(nèi)的一點,直線OP交該拋物線對稱軸于點B,直線CPx軸于點A

(1)求該拋物線的表達式;

(2)如果點P的橫坐標為m,試用m的代數(shù)式表示線段BC的長

(3)如果ABP的面積等于ABC的面積,求點P坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與軸的一個交點坐標為(1,0),其部分圖象如圖所示,下列結論:

4ac<b2; 方程ax2+bx+c=0的兩個根是 3a+c>0; y>0時,x的取值范圍是-1≤x<3; x<0時,yx增大而增大;

其中結論正確有__________.

查看答案和解析>>

同步練習冊答案