【題目】已知兩種不同的數(shù)對(duì)處理器、.當(dāng)數(shù)對(duì)輸入處理器時(shí),輸出數(shù)對(duì),記作,,;但數(shù)對(duì)輸入處理器時(shí),輸出數(shù)對(duì),記作,

1,  ,  ),,  ,  ).

2)當(dāng),,時(shí),求,;

3)對(duì)于數(shù)對(duì),,一定成立嗎?若成立,說(shuō)明理由;若不成立,舉例說(shuō)明.

【答案】17,42,1;(2,;(3)不成立,見(jiàn)解析

【解析】

1)根據(jù)題意把分別代入,,,中即可;

2)先根據(jù),求出,,再根據(jù),列出關(guān)于、的方程組即可求解出的值.

3)由(1)可知:,,,,,然后求出即可得出結(jié)論.

解:(1,

,,

,,,

得到,,

同理把,,代入,,中,可得,,

故答案為74;2,1;.

2,,

,

當(dāng),,時(shí),根據(jù),,

可得

解得;

3)不成立,理由如下:

由(1)可知:,,,

,

故不成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠ABC=120°,BD 平分∠ABC,∠DAC=60°,若 AB=2BC=3,則 BD=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知 AD 是△ABC 的邊 BC 上的中線.

(1)作出△ABD 的邊 BD 上的高.

(2)若△ABC 的面積為 10,求△ADC 的面積.

(3)若△ABD 的面積為 6,且 BD 邊上的高為 3,求 BC 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,給出五個(gè)等量關(guān)系:①ADBC;②ACBD;③CEDE;④∠D=∠C;⑤∠DAB=∠CBA

請(qǐng)你以其中兩個(gè)為條件,另外三個(gè)中的一個(gè)為結(jié)論,推出一個(gè)正確的結(jié)論(只需寫(xiě)出一種情況),并加以證明.

已知:

求證:

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADEC

1)若∠C40°AB平分∠DAC,求∠DAB的度數(shù).

2)若AE平分∠DABBF平分∠ABC,試說(shuō)明AEBF的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,對(duì)折矩形紙片ABCD,使ABDC重合,得到折痕MN,將紙片展平;再一次折疊,使點(diǎn)D落到MN上的點(diǎn)F處,折痕APMNE;延長(zhǎng)PFABG.求證:

(1)AFG≌△AFP;

(2)APG為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題:已知α、β均為銳角,tanα=,tanβ=,求α+β的度數(shù).

探究:(1)用6個(gè)小正方形構(gòu)造如圖所示的網(wǎng)格圖(每個(gè)小正方形的邊長(zhǎng)均為1),請(qǐng)借助這個(gè)網(wǎng)格圖求出α+β的度數(shù);

延伸:(2)設(shè)經(jīng)過(guò)圖中M、P、H三點(diǎn)的圓弧與AH交于R,求的弧長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:四邊形ABCD中,對(duì)角線BD平分∠ABC,∠DCB=123°,∠ABC=50°,并且∠BAD+CAD=180°,那么∠DAC的度數(shù)為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊ADx軸平行,A、B兩點(diǎn)的橫坐標(biāo)分別為13,反比例函數(shù)y=的圖象經(jīng)過(guò)A、B兩點(diǎn),則菱形ABCD的面積是( 。

A. 4 B. 4 C. 2 D. 2

查看答案和解析>>

同步練習(xí)冊(cè)答案