【題目】如圖,在△ABC中,AB=AC,∠BAC=30°,以AC為腰在其右側(cè)作△ACD,使AD=AC,連接BD,設(shè)∠CAD=.若=60°,CD=2,
(1)求BD的長(zhǎng).
(2)設(shè)∠DBC=,請(qǐng)你猜想與的數(shù)量關(guān)系,并說(shuō)明理由.
【答案】(1)BD=2;(2)=,理由見(jiàn)解析
【解析】
(1)根據(jù)等邊三角形的性質(zhì)和含30°的直角三角形的性質(zhì)解答即可;
(2)根據(jù)等腰三角形的性質(zhì)和角之間的關(guān)系證明即可.
(1)∵ =60°,AC=AD,
∴ △ACD為等邊三角形,
∴ AD =DC =2.
∵ ∠BAC=30°,
∴ ∠BAD=90°.
∵ AB=AC=AD,
∴ BD=2
(2) =.
證明:∵ AB=AC,∠BAC=30°,
∴ ∠ABC==75°.
∵ AB=AD,
∴ ∠ABD==75°
∴ =75°-(75°)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲和乙同時(shí)從學(xué)校放學(xué),兩人以各自送度勻速步行回家,甲的家在學(xué)校的正西方向,乙的家在學(xué)校的正東方向,乙家離學(xué)校的距離比甲家離學(xué)校的距離遠(yuǎn)3900米,甲準(zhǔn)備一回家就開(kāi)始做什業(yè),打開(kāi)書(shū)包時(shí)發(fā)現(xiàn)錯(cuò)拿了乙的練習(xí)冊(cè).于是立即步去追乙,終于在途中追上了乙并交還了練習(xí)冊(cè),然后再以先前的速度步行回家,(甲在家中耽擱和交還作業(yè)的時(shí)間忽略不計(jì))結(jié)果甲比乙晚回到家中,如圖是兩人之間的距離y米與他們從學(xué)校出發(fā)的時(shí)間x分鐘的函數(shù)關(guān)系圖,則甲的家和乙的家相距_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙3名學(xué)生各自隨機(jī)選擇到A、B 2個(gè)書(shū)店購(gòu)書(shū).
(1)求甲、乙2名學(xué)生在不同書(shū)店購(gòu)書(shū)的概率;
(2)求甲、乙、丙3名學(xué)生在同一書(shū)店購(gòu)書(shū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用一個(gè)直徑為10cm的玻璃球和一個(gè)圓錐形的牛皮紙紙帽制作一個(gè)不倒翁玩具,不倒翁的軸截面如圖所示,圓錐的母線(xiàn)AB與⊙O相切于點(diǎn)B,不倒翁的頂點(diǎn)A到桌面L的最大距離是18cm.若將圓錐形紙帽表面全涂上顏色,則涂色部分的面積為_____cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)
(2)
(3)8x2-4(2x2+3x-1)
(4) 5x2-2(3y2-5x2)+(-4y2+7xy)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)
過(guò)點(diǎn)A、C、B的拋物線(xiàn)的一部分C1與經(jīng)過(guò)點(diǎn)A、D、B的拋物線(xiàn)的一部分C2組合成一條封閉曲線(xiàn),我們把這條封
閉曲線(xiàn)稱(chēng)為“蛋線(xiàn)”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線(xiàn)C2:(<0)的頂點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線(xiàn)”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)△BDM為直角三角形時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過(guò)點(diǎn)C作直線(xiàn)l∥AB,點(diǎn)P是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),直線(xiàn)PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線(xiàn)PB與直線(xiàn)AC交于點(diǎn)E.
(1)求∠BAC的度數(shù);
(2)當(dāng)點(diǎn)D在AB上方,且CD⊥BP時(shí),求證:PC=AC;
(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中
①當(dāng)點(diǎn)A在線(xiàn)段PB的中垂線(xiàn)上或點(diǎn)B在線(xiàn)段PA的中垂線(xiàn)上時(shí),求出所有滿(mǎn)足條件的∠ACD的度數(shù);
②設(shè)⊙O的半徑為6,點(diǎn)E到直線(xiàn)l的距離為3,連結(jié)BD,DE,直接寫(xiě)出△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,AB=AC,AD是BC邊的中線(xiàn),以AC為邊作等邊△ACE,BE與AD相交于點(diǎn)P,點(diǎn)F在BE上,且PF=PA,連接AF下列四個(gè)結(jié)論:①AD⊥BC;②∠ABE=∠AEB;③∠APE=60°;④△AEF≌△ABP,其中正確結(jié)論的個(gè)數(shù)是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com