【題目】如圖,矩形ABCD中,AB=3,BC=5,點PBC邊上的一個動點(點P不與點B、C重合),現(xiàn)將△PCD沿直線PD折疊,使點C落到點C’處;作∠BPC’的角平分線交AB于點E . 設(shè)BP=x , BE=y , 則下列圖象中,能表示yx的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

【答案】D
【解析】解:∵△PC′D是△PCD沿PD折疊得到,
∴∠CPD=∠C′PD,
∵PE平分∠BPC′,
∴∠BPE=∠C′PE,
∴∠BPE+∠CPD=×180°=90°,
又∵∠BPE+∠BEP=90°,
∴∠CPD=∠BEP,
又∵∠B=∠C,
∴△BEP~△CPD,
,
∵BP=x,BE=y,CD=AB=3,BC=5,
∴CP=BC-BP=5-x,

所以y=x2+x(0<x<5),
縱觀各選項,只有D選項符合.
故選:D.
判定△BEP~△CPD,則代入相應(yīng)的值,即可求出x,y之間的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的一邊OA在x軸的負半軸上,O是坐標(biāo)原點,tan∠AOC= ,反比例函數(shù)y= 的圖象經(jīng)過點C,與AB交于點D,若△COD的面積為20,則k的值等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校召集留守兒童過端午節(jié),桌上擺有甲、乙兩盤粽子,每盤中盛有白粽2個,豆沙粽1個,肉粽1個(粽子外觀完全一樣).
(1)小明從甲盤中任取一個粽子,取到豆沙粽的概率是;
(2)小明在甲盤和乙盤中先后各取了一個粽子,請用樹狀圖或列表法求小明恰好取到兩個白粽子的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角△ABC中,∠BAC=90°,D在BC上,連接AD,作BF⊥AD分別交AD于E,AC于F.
(1)如圖1,若BD=BA,求證:△ABE≌△DBE;
(2)如圖2,若BD=4DC,取AB的中點G,連接CG交AD于M, 求證:①GM=2MC;
②AG2=AFAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)、移動終端的迅速發(fā)展,數(shù)字化閱讀越來越普及,公交上的“低頭族”越來越多.某研究機構(gòu)針對“您如何看待數(shù)字化閱讀”問題進行了隨機問卷調(diào)查(如圖1),并將調(diào)查結(jié)果繪制成圖2和圖3所示的統(tǒng)計圖(均不完整).
請根據(jù)統(tǒng)計圖中提供的信息,解答下列問題:



(1)求出本次接受調(diào)查的總?cè)藬?shù),并將條形
統(tǒng)計圖補充完整;
(2)表示觀點B的扇形的圓心角度數(shù)為度;
(3)若嘉興市人口總數(shù)約為270萬,請根據(jù)圖中信息,估計湖州市民認同觀點D的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.

(1)求證:∠BDC=∠A;
(2)若CE=2 ,DE=2,求AD的長,
(3)在(2)的條件下,求弧BD的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=aln2x+bx在x=1處取得最大值ln2﹣1,則a= , b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A是拋物線y2=4x上的一點,以點A和點B(2,0)為直徑的圓C交直線x=1于M,N兩點.直線l與AB平行,且直線l交拋物線于P,Q兩點.
(Ⅰ)求線段MN的長;
(Ⅱ)若 =﹣3,且直線PQ與圓C相交所得弦長與|MN|相等,求直線l的方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2asin2x﹣2 asinxcosx+1在區(qū)間[0, ]的最大值為4,求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案