【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.
(1)求證:∠BDC=∠A;
(2)若CE=2 ,DE=2,求AD的長,
(3)在(2)的條件下,求弧BD的長。
【答案】
(1)
證明:連接OD,
∵CD是⊙O切線,
∴∠ODC=90°,
即∠ODB+∠BDC=90°,
∵AB為⊙O的直徑,
∴∠ADB=90°,
即∠ODB+∠ADO=90°,
∴∠BDC=∠ADO,
∵OA=OD,
∴∠ADO=∠A,
∴∠BDC=∠A.
(2)
解:(2)∵CE⊥AE,
∴∠E=∠ADB=90°,
∴DB∥EC,
∴∠DCE=∠BDC,
∵∠BDC=∠A,
∴∠A=∠DCE,
在Rt△CDE中,CE=2,DE=2,
則tan∠DCE=,
∴∠DCE=30°,
∴∠A=∠DCE=30°,
在Rt△ACE中,AE==2=6,
∴AD=AE-DE=4.
(3)
解:在Rt△ABD中,∠A=30°,AB=×AD=,則OB=AB=.
由(1)得∠BOD=2∠A=60°,
則弧BD的長為=.
【解析】(1)連接OD,由“切線的性質(zhì)”和“直徑所對的圓周角為直角”可證明得;
(2)可先證∠A=∠DCE,由tan∠DCE=,可解得∠DCE的度數(shù),從而可得∠A的度數(shù)為30°,即可求出AE;
(3)求出圓心角∠BOD的度數(shù),和半徑OB,即可求得.
【考點精析】根據(jù)題目的已知條件,利用圓周角定理和切線的性質(zhì)定理的相關知識可以得到問題的答案,需要掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.
科目:初中數(shù)學 來源: 題型:
【題目】為養(yǎng)成學生課外閱讀的習慣,各學校普遍開展了“我的夢 中國夢”課外閱讀活動,某校為了解七年級1200名學生課外日閱讀所用時間情況,從中隨機抽查了部分同學,進行了相關統(tǒng)計,整理并繪制出如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖,請根據(jù)圖表信息解答下列問題:
組別 | 時間段(小時) | 頻數(shù) | 頻率 |
1 | 0≤x<0.5 | 10 | 0.05 |
2 | 0.5≤x<1.0 | 20 | 0.10 |
3 | 1.0≤x<1.5 | 80 | b |
4 | 1.5≤x<2.0 | a | 0.35 |
5 | 2.0≤x<2.5 | 12 | 0.06 |
6 | 2.5≤x<3.0 | 8 | 0.04 |
(1)表中a= , b=;
(2)請補全頻數(shù)分布直方圖中空缺的部分;
(3)樣本中,學生日閱讀所用時間的中位數(shù)落在第組;
(4)請估計該校七年級學生日閱讀量不足1小時的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】邊長為2 的正方形ABCD中,P是對角線AC上的一個動點(點P與A、C不重合),連接BP,將BP繞點B順時針旋轉(zhuǎn)90°到BQ,連接QP,QP與BC交于點E,QP延長線與AD(或AD延長線)交于點F.
(1)連接CQ,證明:CQ=AP;
(2)設AP=x,CE=y,試寫出y關于x的函數(shù)關系式,并求當x為何值時,CE= BC;
(3)猜想PF與EQ的數(shù)量關系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設二次函數(shù)y=x2+ax+b圖像與x軸有2個交點,A(x1,0),B(x2,0);且0< x1<1;1< x2<2,那么(1)a的取值范圍是;b的取值范圍是;則(2) 的取值范圍是.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B、C重合),現(xiàn)將△PCD沿直線PD折疊,使點C落到點C’處;作∠BPC’的角平分線交AB于點E . 設BP=x , BE=y , 則下列圖象中,能表示y與x的函數(shù)關系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】利用如圖算法在平面直角坐標系上打印一系列點,則打印的點在圓x2+y2=25內(nèi)的個數(shù)為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知橢圓C: + =1(a>0,b>0)的離心率為 ,右焦點為F,上頂點為A,且△AOF的面積為 (O為坐標原點).
(1)求橢圓C的方程;
(2)設P是橢圓C上的一點,過P的直線與以橢圓的短軸為直徑的圓切于第一象限內(nèi)的一點M,證明:|PF|+|PM|為定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx有兩個極值點x1、x2 , 且x1<x2 , 若x1+2x0=3x2 , 函數(shù)g(x)=f(x)﹣f(x0),則g(x)( )
A.恰有一個零點
B.恰有兩個零點
C.恰有三個零點
D.至多兩個零點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(Ⅰ)如果關于x的不等式|x+3|+|x﹣2|<a的解集不是空集,求參數(shù)a的取值范圍; (Ⅱ)已知正實數(shù)a,b,且h=min{a, },求證:0<h≤ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com