如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線BD交AC于點(diǎn)D,DE⊥BD交AB于點(diǎn)E,設(shè)⊙O是△BDE的外接圓.

(1)求證:AC是⊙O的切線;
(2)求證:.

26:(1)說明∠ODC=90度∵OD是⊙O的半徑,∴AC是⊙O的切線. (2)說明△EDB相似于△DCB即可。

解析試題分析:(1)證明:連接OD,∵DE⊥DB,⊙O是△BDE的外接圓,
∴BE是直徑,點(diǎn)O是BE的中點(diǎn),
∵∠C=90°,∴∠DBC+∠BDC=90°,又BD為∠ABC的平分線,∴∠ABD=∠DBC,
∵OB=OD,∴∠ABD=∠ODB,則∠ODB+∠BDC=90°即∠ODC=90°
又∵OD是⊙O的半徑,∴AC是⊙O的切線.
(2)依題意知,Rt△EDB和Rt△DCB中,∠EDB=∠C=90°。因?yàn)镈B平分∠ABC,所以∠ABD=∠DBC。
所以Rt△EDB∽Rt△DCB。則所以可得
考點(diǎn):圓與相似三角形性質(zhì)
點(diǎn)評:本題難度中等,主要考查學(xué)生對圓與相似三角形性質(zhì)知識點(diǎn)的掌握,為中考常考題型,注意數(shù)形結(jié)合應(yīng)用。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點(diǎn)D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動,到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動,在折線DE-EB上以1cm/s的速度運(yùn)動.當(dāng)點(diǎn)P與點(diǎn)A不重合時,過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動時間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案