【題目】已知:如圖,∠1=2,∠3=E,試說明:∠A=EBC,(請按圖填空,并補理由,)

證明:∵∠1=2(已知),

____________,________

∴∠E=______________

又∵∠E=3(已知),

∴∠3=______(等量代換),

____________(內(nèi)錯角相等,兩直線平行),

∴∠A=EBC,________

【答案】DB EC 內(nèi)錯角相等,兩直線平行 4 兩直線平行,內(nèi)錯角相等 4 AD BE 兩直線平行,同位角相等

【解析】

根據(jù)平行線的判定得出DBEC,根據(jù)平行線的性質(zhì)得出∠E=4,求出∠3=4,根據(jù)平行線的判定得出ADBE即可.

證明:∵∠1=2(已知),

DBEC(內(nèi)錯角相等,兩直線平行),

∴∠E=4(兩直線平行,內(nèi)錯角相等),

又∵∠E=3(已知),

∴∠3=4 等量代換),

ADBE(內(nèi)錯角相等,兩直線平行),

∴∠A=EBC(兩直線平行,同位角相等),

故答案為:DB,EC,內(nèi)錯角相等,兩直線平行,4,兩直線平行,內(nèi)錯角相等,4,AD,BE,兩直線平行,同位角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)取最小值時,代數(shù)式的最小值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,DBC的中點,則下列結(jié)論正確的是( )

①△ABD≌△ACD;②∠B=∠C;③∠BAD=∠CAD;ADBC

A. ①②③B. ②③④C. ①②④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=6,B=60°,點GCD邊的中點,點E、F分別是AG、AD上的兩個動點,則EF+ED的最小值是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于未知數(shù)為 x,y 的二元一次方程組,如果方程組的解 x,y 滿足 ,我們就說方程組的解 x y 具有鄰好關(guān)系

(1) 方程組的解xy是否具有鄰好關(guān)系”? 說明你的理由;

(2) 若方程組的解xy具有鄰好關(guān)系,求m的值;

(3) 未知數(shù)為x,y的方程組,其中ax,y都是正整數(shù),該方程組的解xy是否具有鄰好關(guān)系”? 如果具有,請求出a的值及方程組的解;如果不具有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店從廠家選購甲、乙兩種商品,乙商品每件進價比甲商品每件進價少20元,若購進甲商品5件和乙商品4件共需要1000元;

(1)求甲、乙兩種商品每件的進價分別是多少元?

(2)若甲種商品的售價為每件145元,乙種商品的售價為每件120元,該商店準(zhǔn)備購進甲、乙兩種商品共40件,且這兩種商品全部售出后總利潤不少于870元,則甲種商品至少可購進多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以線段AB為直徑的⊙O上取一點,連接AC、BC.ABC沿AB翻折后得到ABD.

(1)試說明點D在⊙O上;

(2)在線段AD的延長線上取一點E,使AB2=AC·AE.求證:BE為⊙O的切線;

(3)在(2)的條件下,分別延長線段AE、CB相交于點F,若BC=2,AC=4,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtPMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCDAB=2cm,BC=10cm,點C和點M重合,點B、C(M)、N在同一直線上,令RtPMN不動,矩形ABCD沿MN所在直線以每秒1cm的速度向右移動,至點C與點N重合為止,設(shè)移動x秒后,矩形ABCDPMN重疊部分的面積為y,則yx的大致圖象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的頂點O是原點,頂點By軸上,兩條對角線AC、OB的長分別是64,反比例函數(shù)的圖象經(jīng)過點C.

(1)寫出點A的坐標(biāo),并求k的值;

(2)將菱形OABC沿y軸向下平移多少個單位長度后點A會落在該反比例函數(shù)的圖象上?

查看答案和解析>>

同步練習(xí)冊答案