【題目】如圖,P是正方形ABCDBC上的一點(diǎn),且BP=3PC,QCD中點(diǎn).

(1)求證:ADQ∽△QCP.

(2)試問:AQPQ有什么關(guān)系(位置與數(shù)量)?

【答案】(1)見解析;(2)AQ=2PQ,且AQPQ.理由見解析

【解析】分析:1)在所要求證的兩個(gè)三角形中已知的等量條件為D=C=90°,若證明兩三角形相似,可證兩個(gè)三角形的對(duì)應(yīng)直角邊成比例;

2AQ=2PQ,AQPQ.根據(jù)相似三角形的對(duì)應(yīng)邊成比例即可求得AQPQ的數(shù)量關(guān)系;根據(jù)相似三角形的對(duì)應(yīng)角相等即可證得AQPQ的位置關(guān)系.

詳解:(1∵四邊形ABCD是正方形,AD=CD,C=D=90°;

又∵QCD中點(diǎn),CQ=DQ=AD

BP=3PC,CP=AD,==

又∵∠C=D=90°,∴△ADQ∽△QCP;

2AQ=2PQAQPQ.理由如下

由(1)知,ADQ∽△QCP==,===,AQ=2PQ

∵△ADQ∽△QCP,∴∠AQD=QPC,DAQ=PQC

∴∠PQC+∠DQA=DAQ+AQD=90°,AQQP

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)為直線上一點(diǎn),過點(diǎn)作射線,使,將一直角三角板的直角頂點(diǎn)放在點(diǎn)處(),一邊在射線上,另一邊在直線的下方.

1)將圖1中的三角板繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至圖2,使一邊的內(nèi)部,且恰好平分,求的度數(shù);

2)將圖1中的三角板繞點(diǎn)以每秒5的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第秒時(shí),直線恰好平分銳角,求的值;

將圖1中的三角板繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至圖3,使一邊的內(nèi)部,請(qǐng)?zhí)骄?/span>的值./span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

(閱讀材料)

在數(shù)軸上,通常用“兩數(shù)的差”來表示“數(shù)軸上兩點(diǎn)的距離”如圖1中三條線段的

長度可表示為:,結(jié)論:數(shù)軸上任意兩點(diǎn)

表示的數(shù)為分別,則這兩個(gè)點(diǎn)間的距離為(即:用較大的數(shù)去減較小的數(shù))

(理解運(yùn)用)

根據(jù)閱讀材料完成下列各題:

1)如圖2, 分別表示數(shù),求線段的長;

2)若在直線上存在點(diǎn),使得,求點(diǎn)對(duì)應(yīng)的數(shù)值.

3兩點(diǎn)分別從同時(shí)出發(fā)以3個(gè)單位、2個(gè)單位長度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),求當(dāng)點(diǎn)重合時(shí),它們運(yùn)動(dòng)的時(shí)間;

4)在(3)的條件下,求當(dāng)時(shí),它們運(yùn)動(dòng)的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=kx(k>0)與雙曲線交于A、B兩點(diǎn),且點(diǎn)A的縱坐標(biāo)為4,第一象限的雙曲線上有一點(diǎn),過點(diǎn)PPQ//y軸交直線AB于點(diǎn)Q

1)直接寫出k的值及點(diǎn)B的坐標(biāo):

2)求線段PQ的長;

3)如果在直線y=kx上有一點(diǎn)M,且滿足BPM的面積等于12,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計(jì)劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學(xué)生的選修情況,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問題:

(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計(jì)圖中,m的值是

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動(dòng),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=2x+b的圖象與反比例函數(shù)(x>0)的圖象交于點(diǎn)A(m,2),與坐標(biāo)軸分別交于B和C(0,-2)兩點(diǎn).

(1)求反比例函數(shù)的表達(dá)式;

(2)若P是y軸上一動(dòng)點(diǎn),當(dāng)PA+PB的值最小時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市教育行政部門為了了解初一學(xué)生每學(xué)期參加綜合實(shí)踐活動(dòng)的情況,隨機(jī)抽樣調(diào)查了某校初一學(xué)生一個(gè)學(xué)期參加綜合實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息,回答下列問題:

1)扇形統(tǒng)計(jì)圖中a的值為_____,“活動(dòng)時(shí)間為4天”的扇形所對(duì)圓心角的度數(shù)為_____°,該校初一學(xué)生的總?cè)藬?shù)為______

2)補(bǔ)全頻數(shù)分布直方圖;

3)如果該市共有初一學(xué)生6000人,請(qǐng)你估計(jì)“活動(dòng)時(shí)間不少于4天”的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軍自制的勻速直線運(yùn)動(dòng)遙控車模型甲、乙兩車同時(shí)分別從出發(fā),沿直線軌道同時(shí)到達(dá)處,已知乙的速度是甲的速度的1.5倍,甲、乙兩遙控車與處的距離、(米)與時(shí)間(分鐘)的函數(shù)關(guān)系如圖所示,則下列結(jié)論中:①的距離為120米;②乙的速度為60/分;③的值為;④若甲、乙兩遙控車的距離不少于10米時(shí),兩車信號(hào)不會(huì)產(chǎn)生互相干擾,則兩車信號(hào)不會(huì)產(chǎn)生互相干擾的的取值范圍是,其中正確的有( )個(gè)

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】快遞公司為提高快遞分揀的速度,決定購買機(jī)器人來代替人工分揀,兩種型號(hào)的機(jī)器人的工作效率和價(jià)格如表:

型號(hào)

每臺(tái)每小時(shí)分揀快遞件數(shù)()

1000

800

每臺(tái)價(jià)格(萬元)

5

3

該公司計(jì)劃購買這兩種型號(hào)的機(jī)器人共10臺(tái),并且使這10臺(tái)機(jī)器人每小時(shí)分揀快遞件數(shù)總和不少于8500

(1)設(shè)購買甲種型號(hào)的機(jī)器人x臺(tái),購買這10臺(tái)機(jī)器人所花的費(fèi)用為y萬元,求yx之間的關(guān)系式;

(2)購買幾臺(tái)甲種型號(hào)的機(jī)器人,能使購買這10臺(tái)機(jī)器人所花總費(fèi)用最少?最少費(fèi)用是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案