精英家教網 > 初中數學 > 題目詳情

【題目】如圖,正方形ABCD,AB=6,點E在邊CD上,CE=2DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF,下列結論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤SFCA=3.6,其中正確結論是

【答案】①②③④⑤
【解析】解:∵正方形ABCD的邊長為6,CE=2DE, ∴DE=2,EC=4,
∵把△ADE沿AE折疊使△ADE落在△AFE的位置,
∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,
在Rt△ABG和Rt△AFG中 ,
∴Rt△ABG≌Rt△AFG(HL),
∴GB=GF,∠BAG=∠FAG,
∴∠GAE=∠FAE+∠FAG= ∠BAD=45°,所以①正確;
設BG=x,則GF=x,C=BC﹣BG=6﹣x,
在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,
∵CG2+CE2=GE2
∴(6﹣x)2+42=(x+2)2 , 解得x=3,
∴BG=3,CG=6﹣3=3
∴BG=CG,所以②正確;
∵EF=ED,GB=GF,
∴GE=GF+EF=BG+DE,所以③正確;
∵GF=GC,
∴∠GFC=∠GCF,
又∵Rt△ABG≌Rt△AFG,
∴∠AGB=∠AGF,
而∠BGF=∠GFC+∠GCF,
∴∠AGB+∠AGF=∠GFC+∠GCF,
∴∠AGB=∠GCF,
∴CF∥AG,所以④正確;
過F作FH⊥DC
∵BC⊥DH,
∴FH∥GC,
∴△EFH∽△EGC,
= ,
EF=DE=2,GF=3,
∴EG=5,
∴△EFH∽△EGC,
∴相似比為: = ,
∴SFGC=SGCE﹣SFEC= ×3×4﹣ ×4×( ×3)= =3.6,
連接AC,
∵CF∥AG,
∴SFCA=SFGC=3.6,
所以⑤正確.
故正確的有①②③④⑤,
故答案為:①②③④⑤.

先計算出DE=2,EC=4,再根據折疊的性質AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根據“HL”可證明Rt△ABG≌Rt△AFG,則GB=GF,∠BAG=∠FAG,所以∠GAE= ∠BAD=45°;GE=GF+EF=BG+DE;設BG=x,則GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根據勾股定理得(6﹣x)2+42=(x+2)2 , 解得x=3,則BG=CG=3,則點G為BC的中點;同時得到GF=GC,根據等腰三角形的性質得∠GFC=∠GCF,再由Rt△ABG≌Rt△AFG得到∠AGB=∠AGF,然后根據三角形外角性質得∠BGF=∠GFC+∠GCF,易得∠AGB=∠GCF,根據平行線的判定方法得到CF∥AG;過F作FH⊥DC,則△EFH∽△EGC,△EFH∽△EGC,由相似比為 ,可計算SFGC . 根據同底等高的三角形的面積相等即可得到結論.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,則關于x的一元一次方程ax2+bx+c=2(a≠0)的解為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】龜兔賽跑,它們從同一地點同時出發(fā),不久兔子就把烏龜遠遠地甩在后面,于是兔子便得意洋洋地躺在一棵大樹下睡起覺來.烏龜一直在堅持不懈、持之以恒地向終點跑著,兔子一覺醒來,看見烏龜快接近終點了,這才慌忙追趕上去,但最終輸給了烏龜.下列圖象中能大致反映龜兔行走的路程S隨時間t變化情況的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為⊙O直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,連接CD.過點C作CE⊥DB,垂足為E,直線AB與CE相交于F點.
(1)求證:CF為⊙O的切線;
(2)當BF=5,sinF= 時,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了維護海洋權益,新組建的國家海洋局加大了在南海的巡邏力度,一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時發(fā)現(xiàn)一艘不明國籍的船只停在C處海域.如圖所示,AB=60( )海里,在B處測得C在北偏東45°的方向上,A處測得C在北偏西30°的方向上,在海岸線AB上有一燈塔D,測得AD=120( )海里.

(1)分別求出A與C及B與C的距離AC、BC(結果保留根號)
(2)已知在燈塔D周圍100海里范圍內有暗礁群,我在A處海監(jiān)船沿AC前往C處盤查,圖中有無觸礁的危險?
(參考數據: =1.41, =1.73, =2.45)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在我市雙城同創(chuàng)的工作中,某社區(qū)計劃對1200m2的區(qū)域進行綠化,經投標,由甲、乙兩個施工隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為300m2區(qū)域的綠化時,甲隊比乙隊少用3天.
(1)甲、乙兩施工隊每天分別能完成綠化的面積是多少?
(2)設先由甲隊施工x天,再由乙隊施工y天,剛好完成綠化任務,求y與x的函數關系式.
(3)若甲隊每天綠化費用為0.4萬元,乙隊每天綠化費用為0.15萬元,且甲、乙兩隊施工的總天數不超過14天,則如何安排甲、乙兩隊施工的天數,使施工費用最少?并求出最少費用.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖③所示,圖象過點(﹣1,0),對稱軸為直線x=2,則下 列結論中正確的個數有( ) ①4a+b=0;
②9a+3b+c<0;
③若點A(﹣3,y1),點B(﹣ ,y2),點C(5,y3)在該函數圖象上,則y1<y3<y2;
④若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2 , 且x1<x2 , 則x1<﹣1<5<x2

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,以等邊三角形ABC一邊AB為直徑的⊙O與邊AC、BC分別交于點D、E,過點D作DF⊥BC,垂足為F.
(1)求證:DF為⊙O的切線;
(2)若等邊三角形ABC的邊長為4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】綜合題。
(1)計算:4sin60°+|3﹣ |﹣( 1+(π﹣2017)0
(2)解方程組:

查看答案和解析>>

同步練習冊答案