精英家教網 > 初中數學 > 題目詳情
精英家教網如圖,AB是半圓O的直徑,AC=AD,OC=2,∠CAB=30°,則點O到CD的距離OE=
 
分析:在等腰△ACD中,頂角∠A=30°,易求得∠ACD=75°;根據等邊對等角,可得:∠OCA=∠A=30°,由此可得,∠OCD=45°;即△COE是等腰直角三角形,則OE=
2
解答:解:∵AC=AD,∠A=30°;
∴∠ACD=∠ADC=75°;
∵AO=OC,
∴∠OCA=∠A=30°;
∴∠OCD=45°,即△OCE是等腰直角三角形.
在等腰Rt△OCE中,OC=2;因此OE=
2
點評:本題綜合考查了等腰三角形的性質、三角形的內角和定理、解直角三角形等知識的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,AB是半圓O的直徑,AC是弦,點P從點B開始沿BA邊向點A以1cm/s的速度移動,若AB長為10cm,點O到AC的距離為4cm.
(1)求弦AC的長;
(2)問經過幾秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,AB是半圓O的直徑,OD是半徑,BM切半圓于點B,OC與弦AD平行交BM于點C.
(1)求證:CD是半圓O的切線;
(2)若AB的長為4,點D在半圓O上運動,當AD的長為1時,求點A到直線CD的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,AB是半圓O的直徑,點D是半圓上一動點,AB=10,AC=8,當△ACD是等腰三角形時,點D到AB的距離是
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,AB是半圓O的直徑,以OA為直徑的半圓O′與弦AC交于點D,O′E∥AC,并交OC于點E,則下列結論:①S△O′OE=
1
2
S△AOC2;②點D時AC的中點;③
AC
=2AD;④四邊形O′DEO是菱形.其中正確的結論是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,F為垂足,交AC于點C使∠BED=∠C.請判斷直線AC與圓O的位置關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案