【題目】已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)P為正方形內(nèi)一動(dòng)點(diǎn),若點(diǎn)M在AB上,且滿足△PBC∽△PAM,延長(zhǎng)BP交AD于點(diǎn)N,連結(jié)CM.

(1)如圖一,若點(diǎn)M在線段AB上,求證:AP⊥BN;AM=AN;
(2)①如圖二,在點(diǎn)P運(yùn)動(dòng)過(guò)程中,滿足△PBC∽△PAM的點(diǎn)M在AB的延長(zhǎng)線上時(shí),AP⊥BN和AM=AN是否成立?(不需說(shuō)明理由)
②是否存在滿足條件的點(diǎn)P,使得PC= ?請(qǐng)說(shuō)明理由.

【答案】
(1)

證明:如圖一中

∵四邊形ABCD是正方形,

∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,

∵△PBC∽△PAM,

∴∠PAM=∠PBC, ,

∴∠PBC+∠PBA=90°,

∴∠PAM+∠PBA=90°,

∴∠APB=90°,

∴AP⊥BN,

∵∠ABP=∠ABN,∠APB=∠BAN=90°,

∴△BAP∽△BNA,

,

∵AB=BC,

∴AN=AM.


(2)

解:①仍然成立,AP⊥BN和AM=AN.理由如圖二中,

∵四邊形ABCD是正方形,

∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,

∵△PBC∽△PAM,

∴∠PAM=∠PBC, ,

∴∠PBC+∠PBA=90°,

∴∠PAM+∠PBA=90°,

∴∠APB=90°,

∴AP⊥BN,

∵∠ABP=∠ABN,∠APB=∠BAN=90°,

∴△BAP∽△BNA,

,

∵AB=BC,

∴AN=AM.

②這樣的點(diǎn)P不存在.

理由:假設(shè)PC= ,

如圖三中,

以點(diǎn)C為圓心 為半徑畫(huà)圓,以AB為直徑畫(huà)圓,

CO= = >1+

∴兩個(gè)圓外離,∴∠APB<90°,這與AP⊥PB矛盾,

∴假設(shè)不可能成立,

∴滿足PC= 的點(diǎn)P不存在


【解析】(1)由△PBC∽△PAM,推出∠PAM=∠PBC,由∠PBC+∠PBA=90°,推出∠PAM+∠PBA=90°即可證明AP⊥BN,由△PBC∽△PAM,推出 = = ,由△BAP∽△BNA,推出 = ,得到 = ,由此即可證明.(2)①結(jié)論仍然成立,證明方法類似(1).②這樣的點(diǎn)P不存在.利用反證法證明.假設(shè)PC= ,推出矛盾即可.本題考查相似三角形綜合題、正方形的性質(zhì)、圓的有關(guān)知識(shí),解題的關(guān)鍵是熟練應(yīng)用相似三角形性質(zhì)解決問(wèn)題,最后一個(gè)問(wèn)題利用圓的位置關(guān)系解決問(wèn)題,有一定難度,屬于中考?jí)狠S題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過(guò)1千克的,按每千克22元收費(fèi);超過(guò)1千克,超過(guò)的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)請(qǐng)分別寫(xiě)出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義運(yùn)算:ab=a(1﹣b).若a,b是方程x2﹣x+ m=0(m<0)的兩根,則bb﹣aa的值為(
A.0
B.1
C.2
D.與m有關(guān)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實(shí)行階梯水價(jià),水價(jià)分檔遞增.計(jì)劃使第一檔、第二檔和第三檔的水價(jià)分別覆蓋全市居民家庭的80%,15%5%.為合理確定各檔之間的界限,隨機(jī)抽查了該市5萬(wàn)戶居民家庭上一年的年用水量(單位:㎡),繪制了統(tǒng)計(jì)圖,如圖所示,下面有四個(gè)推斷:

年用水量不超過(guò)180㎡的該市居民家庭按第一檔水價(jià)交費(fèi)

年用水量超過(guò)240㎡的該市居民家庭按第三檔水價(jià)交費(fèi)

該市居民家庭年用水量的中位數(shù)在150-180之間

該市居民家庭年用水量的平均數(shù)不超過(guò)180

正確的是

A.①③ B.①④ C.②③ D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:
在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,==,利用上述結(jié)論可以求解如下題目:
在△ABC中,∠A、∠B、∠C的對(duì)邊分別為a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵=∴b====3
理解應(yīng)用:
如圖,甲船以每小時(shí)30海里的速度向正北方向航行,當(dāng)甲船位于A1處時(shí),乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線航行,當(dāng)甲船航行20分鐘到達(dá)A2時(shí),乙船航行到甲船的北偏西120°方向的B2處,此時(shí)兩船相距10海里.

(1)判斷△A1A2B2的形狀,并給出證明
(2)求乙船每小時(shí)航行多少海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),
①BC與CF的位置關(guān)系為:
②BC,CD,CF之間的數(shù)量關(guān)系為:;(將結(jié)論直接寫(xiě)在橫線上)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫(xiě)出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=2 ,CD= BC,請(qǐng)求出GE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如圖1,若點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為F,求證:△ADF∽△ABC;
(2)如圖2,在(1)的條件下,若α=45°,求證:DE2=BD2+CE2;
(3)如圖3,若α=45°,點(diǎn)E在BC的延長(zhǎng)線上,則等式DE2=BD2+CE2還能成立嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.

(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明,若不成立,請(qǐng)說(shuō)明理由;
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)BD交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3 時(shí),求線段DH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:在ABC,ADE中,BAC=DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD.圖中的CE、BD有怎樣的大小和位置關(guān)系?試證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案