【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費(fèi);超過1千克,超過的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢?
【答案】
(1)解:由題意知:
當(dāng)0<x≤1時,y甲=22x;
當(dāng)1<x時,y甲=22+15(x﹣1)=15x+7.
y乙=16x+3.
(2)解:①當(dāng)0<x≤1時,
令y甲<y乙,即22x<16x+3,
解得:0<x< ;
令y甲=y乙,即22x=16x+3,
解得:x= ;
令y甲>y乙,即22x>16x+3,
解得: <x≤1.
②x>1時,
令y甲<y乙,即15x+7<16x+3,
解得:x>4;
令y甲=y乙,即15x+7=16x+3,
解得:x=4;
令y甲>y乙,即15x+7>16x+3,
解得:1<x<4.
綜上可知:當(dāng) <x<4時,選乙快遞公司省錢;當(dāng)x=4或x= 時,選甲、乙兩家快遞公司快遞費(fèi)一樣多;當(dāng)0<x< 或x>4時,選甲快遞公司省錢.
【解析】(1)根據(jù)“甲公司的費(fèi)用=起步價+超出重量×續(xù)重單價”可得出y甲關(guān)于x的函數(shù)關(guān)系式,根據(jù)“乙公司的費(fèi)用=快件重量×單價+包裝費(fèi)用”即可得出y乙關(guān)于x的函數(shù)關(guān)系式;(2)分0<x≤1和x>1兩種情況討論,分別令y甲<y乙、y甲=y乙和y甲>y乙,解關(guān)于x的方程或不等式即可得出結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題:
(1)三條直線相交,最少有__________個交點(diǎn),最多有__________個交點(diǎn),分別畫出圖形,并數(shù)出圖形中的對頂角和鄰補(bǔ)角的對數(shù);
(2)四條直線相交,最少有__________個交點(diǎn),最多有__________個交點(diǎn),分別畫出圖形,并數(shù)出圖形中的對頂角和鄰補(bǔ)角的對數(shù);
(3)依次類推,n條直線相交,最少有__________個交點(diǎn),最多有__________個交點(diǎn),對頂角有__________對,鄰補(bǔ)角有__________對.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=BC,BE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D,∠BAD=45°,AD與BE交于點(diǎn)F,連接CF.
(1)求證:BF=2AE;
(2)若CD= ,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線AB,CD相交于點(diǎn)O,作∠DOE=∠BOD,OF平分∠AOE.
(1)判斷OF與OD的位置關(guān)系;
(2)若∠AOC∶∠AOD=1∶5,求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的兩個實(shí)數(shù)根互為相反數(shù),則a的值為( )
A.2
B.0
C.1
D.2或0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式屬于正確分解因式的是
A. 1+4x2=(1+2x)2 B. 6a-9-a2=-(a-3)2
C. 1+4m-4m2=(1-2m)2 D. x2+xy+y2=(x+y)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種商品,由于進(jìn)價降低了5%,出售價不變,使得利潤由n%提高到(n+6)%,則n的值為( ).
A.10B.12C.14D.17
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com