如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)為(1,n),與y軸的交點(diǎn)在(0,2)、(0,3)之間(包含端點(diǎn)),則下列結(jié)論:
①當(dāng)x>3時(shí),y<0;
②3a+b>0;
③﹣1≤a≤﹣;
④3≤n≤4中,
正確的是( 。
A. ①② B. ③④ C. ①④ D. ①③
D 解:①∵拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),對(duì)稱軸直線是x=1,
∴該拋物線與x軸的另一個(gè)交點(diǎn)的坐標(biāo)是(3,0),
∴根據(jù)圖示知,當(dāng)x>3時(shí),y<0.
故①正確;
②根據(jù)圖示知,拋物線開(kāi)口方向向下,則a<0.
∵對(duì)稱軸x=﹣=1,
∴b=﹣2a,
∴3a+b=3a﹣2a=a<0,即3a+b<0.
故②錯(cuò)誤;
③∵拋物線與x軸的兩個(gè)交點(diǎn)坐標(biāo)分別是(﹣1,0),(3,0),
∴﹣1×3=﹣3,
∴=﹣3,則a=﹣.
∵拋物線與y軸的交點(diǎn)在(0,2)、(0,3)之間(包含端點(diǎn)),
∴2≤c≤3,
∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.
故③正確;
④根據(jù)題意知,a=﹣,﹣=1,
∴b=﹣2a=,
∴n=a+b+c=c.
∵2≤c≤3,
∴≤c≤4,即≤n≤4.
故④錯(cuò)誤.
綜上所述,正確的說(shuō)法有①③.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,若⊙O的半徑為,AC=2,則sinB的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B右側(cè)),與y軸交于點(diǎn)C(0,﹣3),且OA=2OC.
(1)求這條拋物線的表達(dá)式及頂點(diǎn)M的坐標(biāo);
(2)求tan∠MAC的值;
(3)如果點(diǎn)D在這條拋物線的對(duì)稱軸上,且∠CAD=45°,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是內(nèi)切圓,E,F(xiàn),D分別為切點(diǎn),則tan∠OBD=( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
海豐塔是無(wú)棣燦爛文化的象征(如圖①),喜愛(ài)數(shù)學(xué)實(shí)踐活動(dòng)的小偉查資料得知:海豐塔,史稱唐塔,原名大覺(jué)寺塔,始建于唐貞觀十三年(公元639年),碑記為“尉遲敬德監(jiān)建”,距今已1300多年,被譽(yù)為冀魯三勝之一.小偉決定用自己所學(xué)習(xí)的知識(shí)測(cè)量海豐塔的高度.如圖②,他利用測(cè)角儀站在B處測(cè)得海豐塔最高點(diǎn)P的仰角為45°,又前進(jìn)了18米到達(dá)A處,在A處測(cè)得P的仰角為60°.請(qǐng)你幫助小偉算算海豐塔的高度.(測(cè)角儀高度忽略不計(jì),≈1.7,結(jié)果保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知關(guān)于x的一元二次方程2x2+x+m=0.
(1)當(dāng)m=1時(shí),判斷方程的根的情況;
(2)當(dāng)m=﹣1時(shí),求方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,△ABC中,AB=AC,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),點(diǎn)G、F在BC邊上,四邊形DEFG是正方形.若DE=2cm,則AC的長(zhǎng)為( 。
A. cm B. 4cm C. cm D. cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com