【題目】已知拋物線y=-x2+2x+3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,直線CD與x軸交于點(diǎn)E.
(1)求A、B的坐標(biāo);
(2)求點(diǎn)E的坐標(biāo);
(3)過線段OB的中點(diǎn)N作x軸的垂線并交直線CD于點(diǎn)F,則直線NF上是否存在點(diǎn)M,使得點(diǎn)M到直線CD的距離等于點(diǎn)M到原點(diǎn)O的距離?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)點(diǎn)A的坐標(biāo)(-1,0),點(diǎn)B的坐標(biāo)(3,0);(2)(-3,0);(3)存在,(,)或(,)
【解析】
(1)拋物線y=-x2+2x+3與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)即是方程-x2+2x+3=0的兩個(gè)實(shí)數(shù)根;
(2)先根據(jù)二次函數(shù)表達(dá)式算出點(diǎn)C與頂點(diǎn)D,再用待定系數(shù)法算出直線CD的解析式,最后算出點(diǎn)E坐標(biāo)即可;
(3)存在滿足條件的點(diǎn)M(,m),過點(diǎn)M作MQ⊥CD于Q,連接OM,先證明Rt△FQM∽Rt△FNE,再利用相似的性質(zhì)得到關(guān)于m的方程,解方程即可.
解:(1)由y=0得-x2+2x+3=0,
解得x1=-1,x2=3,
∴點(diǎn)A的坐標(biāo)(-1,0),點(diǎn)B的坐標(biāo)(3,0)
(2)由y=-x2+2x+3,令x=0,得y=3,
∴C(0,3)
又∵y=-x2+2x+3=-(x-1)2+4,
得D(1,4)
設(shè)直線CD的解析式為y=kx+b,得
,
解得:,
∴直線CD的解析式為y=x+3
∴E(-3,0)
(3)存在.
由(1)(2)得,E(-3,0),N(,0)
∴F(, ),EN=,
設(shè)存在滿足條件的點(diǎn)M(,m),作MQ⊥CD于Q,則
FM=, EF=, MQ=OM=
由題意得:Rt△FQM∽Rt△FNE,
∴,
∴4m2
∴m1= ,m2=,
∴點(diǎn)M的坐標(biāo)為M1(,),M2(,)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個(gè)問題:“今有黃金九枚,白銀一十一枚,稱之重適等,交易其一,金輕十三兩,問金、銀各重幾何?”意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等,兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計(jì)),問黃金、白銀每枚各重多少兩?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為⊙的直徑,點(diǎn)是半徑上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合),為⊙的半徑,⊙的弦與⊙相切于點(diǎn),的延長線交⊙于點(diǎn).
(1)設(shè),則與之間的數(shù)量關(guān)系是什么?請(qǐng)說明理由.
(2)若,點(diǎn)關(guān)于的對(duì)稱點(diǎn)為,連接.
①當(dāng) 時(shí),四邊形是菱形;
②當(dāng) 時(shí),點(diǎn)是弦的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣5交y軸于點(diǎn)A,交x軸于點(diǎn)B(﹣5,0)和點(diǎn)C(1,0),過點(diǎn)A作AD∥x軸交拋物線于點(diǎn)D.
(1)求此拋物線的表達(dá)式;
(2)點(diǎn)E是拋物線上一點(diǎn),且點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)在直線AD上,求△EAD的面積;
(3)若點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到某一位置時(shí),△ABP的面積最大,求出此時(shí)點(diǎn)P的坐標(biāo)和△ABP的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的二次函數(shù)(k為常數(shù))和一次函數(shù).
(1)求證:函數(shù)的圖象與x軸有交點(diǎn).
(2)已知函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)間的距離等于3,
①試求此時(shí)k的值.
②若,試求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】星星和陽陽是一對(duì)雙胞胎,他們的爸爸買了兩件不同圖案的T恤給他們,星星和陽陽都想先挑選.于是陽陽設(shè)計(jì)了如下游戲來決定誰先挑選.游戲規(guī)則是:在一個(gè)不透明的袋子里裝有除數(shù)字以外其它均相同的個(gè)小球,上面分別標(biāo)有數(shù)字.一人先從袋中隨機(jī)摸出一個(gè)小球,另一人再從袋中剩下的個(gè)小球中隨機(jī)摸出一個(gè)小球.若摸出的兩個(gè)小球上的數(shù)字之和為偶數(shù),則星星先挑選;否則陽陽先挑選.
(1)用樹狀圖或列表法求出星星先挑選的概率;
(2)你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著國內(nèi)疫情基本得到控制,旅游業(yè)也慢慢復(fù)蘇,經(jīng)市場調(diào)研發(fā)現(xiàn)旅游景點(diǎn)未來天內(nèi),旅游人數(shù)與時(shí)間的關(guān)系如下表;每張門票與時(shí)間之間存在如下圖所示的一次函數(shù)關(guān)系.(,且為整數(shù))
時(shí)間(天) | |||||
人數(shù)(人) |
請(qǐng)結(jié)合上述信息解決下列問題:
(1)直接寫出:關(guān)于的函數(shù)關(guān)系式是 .與時(shí)間函數(shù)關(guān)系式是 .
(2)請(qǐng)預(yù)測未來天中哪一天的門票收入最多,最多是多少?
(3)為支援武漢抗疫,該旅游景點(diǎn)決定從每天獲得的門票收入中拿出元捐贈(zèng)給武漢紅十字會(huì),求捐款后共有幾天每天剩余門票收入不低于元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,點(diǎn)P是AB上一點(diǎn),連接CP,將∠B沿CP折疊,使點(diǎn)B落在B'處.以下結(jié)論正確的有________
①當(dāng)AB'⊥AC時(shí),AB'的長為;
②當(dāng)點(diǎn)P位于AB中點(diǎn)時(shí),四邊形ACPB'為菱形;
③當(dāng)∠B'PA=30°時(shí),;
④當(dāng)CP⊥AB時(shí),AP:AB':BP=1:2:3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)山峰的高度每增加1百米,氣溫大約降低0.6℃.氣溫T(℃)和高度h(百米)的函數(shù)關(guān)系如圖所示.請(qǐng)根據(jù)圖象解決下列問題:
(1)求高度為5百米時(shí)的氣溫.
(2)求T關(guān)于h的函數(shù)表達(dá)式.
(3)測得山頂?shù)臍鉁貫?/span>6℃,求該山峰的高度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com