【題目】如圖所示,二次函數(shù)的圖象與x軸的一個交點(diǎn)為A(3,0),另一個交點(diǎn)為B,且與y軸交于點(diǎn)C.
(1)求m的值;
(2)求點(diǎn)B的坐標(biāo);
(3)該二次函數(shù)圖像上有一點(diǎn)D(x,y)(其中,),使,求點(diǎn)D的坐標(biāo).
【答案】(1)3;(2)B(-1,0);(3)D(2,3).
【解析】
試題(1)由二次函數(shù)的圖象與x軸的一個交點(diǎn)為A(3,0),利用待定系數(shù)法將點(diǎn)A的坐標(biāo)代入函數(shù)解析式即可求得m的值;
(2)根據(jù)(1)求得二次函數(shù)的解析式,然后將y=0代入函數(shù)解析式,即可求得點(diǎn)B的坐標(biāo);
(3)根據(jù)(2)中的函數(shù)解析式求得點(diǎn)C的坐標(biāo),由二次函數(shù)圖象上有一點(diǎn)D(x,y)(其中x>0,y>0),可得點(diǎn)D在第一象限,又由,可知點(diǎn)D與點(diǎn)C的縱坐標(biāo)相等,代入函數(shù)的解析式即可求得點(diǎn)D的坐標(biāo).
試題解析:(1)∵二次函數(shù)的圖象與x軸的一個交點(diǎn)為A(3,0),∴,解得:;
(2)∵二次函數(shù)的解析式為:,∴當(dāng)時,,解得:,,∴B(﹣1,0);
(3)如圖,連接BD、AD,過點(diǎn)D作DE⊥AB,∵當(dāng)x=0時,y=3,∴C(0,3),若,∵D(x,y)(其中x>0,y>0),則可得OC=DE=3,∴當(dāng)y=3時,,解得:x=0或x=2,∴點(diǎn)D的坐標(biāo)為(2,3).
另法:點(diǎn)D與點(diǎn)C關(guān)于x=1對稱,故D(2,3).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦AD,BC相交于點(diǎn)P,AD=BC.
(1)求證:△ACB≌△BDA;
(2)若∠ABC=35,則∠CAP= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價為每件20元,售價為每件30元,每月可賣出180件.如果該商品的售價每上漲1元,就會少賣出10件,但每件售價不能高于35元,設(shè)每件商品的售價上漲x元(x為整數(shù))時,月銷售利潤為y元.
(1)求y與x之間的函數(shù)解析式,并直接寫出自變量x的取值范圍.
(2)當(dāng)每件商品的售價定為多少元時,可獲得的月利潤最大?最大月利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1:在平面直角坐標(biāo)系內(nèi),O為坐標(biāo)原點(diǎn),線段AB兩端點(diǎn)在坐標(biāo)軸上且點(diǎn)A(﹣4,0),點(diǎn)B(0,3),將AB向右平移4個單位長度至OC的位置
(1)直接寫出點(diǎn)C的坐標(biāo) ;
(2)如圖2,過點(diǎn)C作CD⊥x軸于點(diǎn)D,在x軸正半軸有一點(diǎn)E(1,0),過點(diǎn)E作x軸的垂線,在垂線上有一動點(diǎn)P,直接寫出:①點(diǎn)D的坐標(biāo) ; ②三角形PCD的面積為 ;
(3)如圖3,在(2)的條件下,連接AC,當(dāng)△ACP的面積為時,直接寫出點(diǎn)P的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別相交于點(diǎn)A、B,再將△A0B沿直錢CD折疊,使點(diǎn)A與點(diǎn)B重合.折痕CD與x軸交于點(diǎn)C,與AB交于點(diǎn)D.
(1)點(diǎn)A的坐標(biāo)為 ;點(diǎn)B的坐標(biāo)為 ;
(2)求OC的長度,并求出此時直線BC的表達(dá)式;
(3)直線BC上是否存在一點(diǎn)M,使得△ABM的面積與△ABO的面積相等?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(c≠0)過點(diǎn)(-1,0)和點(diǎn)(0,-2),且頂點(diǎn)在第四象限,設(shè)P=a+b+c,則P的取值范是( )
A.-2<P<-1B.-2<P<0C.-4<P<0D.-4<P<-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校文學(xué)社在全校范圍內(nèi)隨機(jī)抽取一部分讀者對社刊中最感興趣的文學(xué)欄目進(jìn)行了投票.每人一張選票,每張選票只能投給一個欄目,經(jīng)統(tǒng)計無棄權(quán)票,根據(jù)投票結(jié)果繪制的條形統(tǒng)計圖如下:
(1)這次參加投票的總?cè)藬?shù)為 .
(2)若全校有3000名讀者,估計其中對“寫作指導(dǎo)”最感興趣的人數(shù).
(3)在全校3000名讀者中,若對某個欄目最感興趣的人數(shù)少于300人將會影響社刊的銷售,這個欄目就需要被撤換.請通過計算判斷,“新書上架”欄目是否需要被撤換.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、D、B、E四點(diǎn)在同一條直線上,AD=BE,BC∥EF,BC=EF.
(1)求證:AC=DF;
(2)若CD為∠ACB的平分線,∠A=25°,∠E=71°,求∠CDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品2件和乙商品1件共需50元,購進(jìn)甲商品1件和乙商品2件共需70元.
(1)求甲、乙兩種商品每件的進(jìn)價分別是多少元?
(2)商場決定甲商品以每件20元出售,乙商品以每件50元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共60件,若要保證獲利不低于1000元,則甲商品最多能購進(jìn)多少件?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com