【題目】如圖,在菱形中,,,過(guò)點(diǎn)作,垂足為,,垂足為.
(1)連接,用等式表示線段與的數(shù)量關(guān)系,并說(shuō)明理由;
(2)連接,過(guò)點(diǎn)作,垂足為,求的長(zhǎng)(用含的代數(shù)式表示);
(3)延長(zhǎng)線段到,延長(zhǎng)線段到,且,連接,,.
①判斷的形狀,并說(shuō)明理由;
②若,求的值.
【答案】(1),見(jiàn)解析;(2);(3)①是等邊三角形,見(jiàn)解析;②
【解析】
(1)連接EF,AC,由菱形的性質(zhì),可證,然后得到為等邊三角形,由解直角三角形得到,即可得到答案;
(2)由菱形的性質(zhì)和等邊三角形的性質(zhì),求出AF的長(zhǎng)度,然后得到BF的長(zhǎng)度,然后由相似三角形的性質(zhì),得到,即可求出答案;
(3)①由等邊三角形的性質(zhì),先證明,然后得到,然后得到,即可得到答案;
②由三角形的面積公式得到,然后得到為等腰直角三角形,再由解直角三角形的性質(zhì),即可求出答案.
解:(1);
理由:∵四邊形是菱形,,
,
,
∵,垂足為,,垂足為,
,
,
,
為等邊三角形,
.
連接,
在中,
,
(2)如圖:
∵四邊形是菱形,,
是等邊三角形,.
,垂足為,
在中,,
在中,,
,垂足為,
,
,
,
(3)如圖:
①是等邊三角形.
理由:連接.
,
為等邊三角形,
,
.
,
,
,
又,
,
.
,
,
為等邊三角形;
②為等邊三角形,
,
.
,
,
,,
,
為等腰直角三角形,
.
過(guò)點(diǎn)作,垂足為.
在中,,
,
在中,,
.
又,
;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)原點(diǎn)的直線與反比例函數(shù)y=(k>0)的圖象交于點(diǎn)A,B兩點(diǎn),在x軸有一點(diǎn)C(3,0),AC⊥BC,連結(jié)AC交反比例函數(shù)圖象于點(diǎn)D,若AD=CD,則k的值為( )
A.B.2C.2D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】姐妹兩人在50米的跑道上進(jìn)行短路比賽,兩人從出發(fā)點(diǎn)同時(shí)起跑,姐姐到達(dá)終點(diǎn)時(shí),妹妹離終點(diǎn)還差3米,已知姐妹兩人的平均速度分別為a米/秒、b米/秒.
(1)如果兩人重新開(kāi)始比賽,姐姐從起點(diǎn)向后退3米,姐妹同時(shí)起跑,兩人能否同時(shí)到達(dá)終點(diǎn)?若能,請(qǐng)求出兩人到達(dá)終點(diǎn)的時(shí)間;若不能,請(qǐng)說(shuō)明誰(shuí)先到達(dá)終點(diǎn).
(2)如果兩人想同時(shí)到達(dá)終點(diǎn),應(yīng)如何安排兩人的起跑位置?請(qǐng)你設(shè)計(jì)兩種方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=-x2-2x+c與x軸的一個(gè)交點(diǎn)是(1,0).
(1)C的值為_______;
(2)選取適當(dāng)?shù)臄?shù)據(jù)補(bǔ)填下表,并在平面直角坐標(biāo)系內(nèi)描點(diǎn)畫(huà)出該拋物線的圖像;
|
|
|
| ||||
|
|
(3)根據(jù)所畫(huà)圖像,寫(xiě)出y>0時(shí)x的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)(方法回顧)連接三角形任意兩邊中點(diǎn)的線段叫三角形的中位線,探索三角形中位線的性質(zhì),方法如下:
①如圖1,D、E分別是AB、AC中點(diǎn),延長(zhǎng)DE到F,使EF=DE,連接CF;
②證明△ADE≌△CFE,再證四邊形DBCF是平行四邊形,從而得到線段DE與BC的位置關(guān)系和數(shù)量關(guān)系分別為_______、________;
(2)(初步運(yùn)用)如圖2,正方形ABCD中,E為邊AD中點(diǎn),G、F分別在邊AB、CD上,且AG=2,DF=3,∠GEF=90°,求GF長(zhǎng).
(3)(拓展延伸)如圖3,四邊形ABCD中,∠A=100°,∠D=110°,E為AD中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=2,DF=,∠GEF=90°,求GF長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有個(gè)質(zhì)地、大小完全相同的小球上分別標(biāo)有數(shù)字,,,,.先將標(biāo)有數(shù)字,,的小球放在第一個(gè)不透明的盒子里,再將其余小球放在第二個(gè)不透明的盒子里.現(xiàn)從第一個(gè)盒子里隨機(jī)取出一個(gè)小球,再?gòu)牡诙䝼(gè)盒子里隨機(jī)取出一個(gè)小球.兩次分別用x、y來(lái)表示.
(1)請(qǐng)利用列表或畫(huà)樹(shù)狀圖的方法中的一種方法,求(x,y)所有可能出現(xiàn)的結(jié)果總數(shù);
(2)求取出的兩個(gè)小球上的數(shù)字之和等于的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;④拋物線與x軸的另一個(gè)交點(diǎn)是(﹣1,0);⑤當(dāng)1<x<4時(shí),有y2<y1,
其中正確的是( )
A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為迎接中華人民共和國(guó)成立七十周年,開(kāi)展了以“不忘初心,緬懷革命先烈,奮斗新時(shí)代”為主題的讀書(shū)活動(dòng).德育處對(duì)九年級(jí)學(xué)生九月份“閱讀該主題相關(guān)書(shū)籍的讀書(shū)量”(下面簡(jiǎn)稱:“讀書(shū)量”)進(jìn)行了隨機(jī)抽樣調(diào)查,并對(duì)所有隨機(jī)抽取學(xué)生的“讀書(shū)量”(單位:本)進(jìn)行了統(tǒng)計(jì),繪制了兩幅不完整的統(tǒng)計(jì)圖(如圖所示).
(1)請(qǐng)補(bǔ)全兩幅統(tǒng)計(jì)圖;本次抽樣調(diào)查抽取了名學(xué)生;
(2)求本次所抽取學(xué)生九月份“讀書(shū)量”的平均數(shù);
(3)已知該校九年級(jí)有500名學(xué)生,請(qǐng)你估計(jì)該校九年級(jí)學(xué)生中,九月份“讀書(shū)量”為5本的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等邊三角形的頂點(diǎn)分別在反比例函數(shù)圖像的兩個(gè)分支上,點(diǎn)在反比例函數(shù)的圖像上,當(dāng)的面積最小時(shí),的值__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com