【題目】材料1:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解.例如:,都是因式分解.因式分解也可稱為分解因式.
材料2:只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是的整式方程稱作一元二次方程.一元二次方程的般形式是:(其中,,為常數(shù)且).“轉(zhuǎn)化”是一種重要的數(shù)學(xué)思想方法,我們可以利用因式分解把部分一元二次方程轉(zhuǎn)化為一元一次方程求解.
例如解方程;
或
原方程的解是,
∴原方程的解是,
又如解方程:
原方程的解是
請(qǐng)閱讀以上材料回答以下問(wèn)題:
(1)若,則_______;_______;
(2)請(qǐng)將下列多項(xiàng)式因式分解:
_______,________;
(3)在平面直角坐標(biāo)系中,已知點(diǎn),,其中是一元二次方程的解,為任意實(shí)數(shù),求長(zhǎng)度的最小值.
【答案】(1),;(2),;(3).
【解析】
(1)等式右邊展開(kāi)整理,根據(jù)多項(xiàng)式相等,對(duì)應(yīng)項(xiàng)的系數(shù)也相等即可求得m,n;
(2)分別用提公因式法和公式法分別因式分解即可;
(3)先通過(guò)因式分解法求得方程的解,得到m的值,從而得到的坐標(biāo),再利用平面上兩點(diǎn)間的距離公式得到PQ長(zhǎng)度的表達(dá)式,從而得到PQ的最小值.
解:(1)∵
∴,
解得:;
∴,.
(2),;
(3)∵,
∴,
∴,
∴,
∴,
根據(jù)平面上兩點(diǎn)間的距離公式有:
∴
故當(dāng)n=8時(shí),長(zhǎng)度有最小值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校利用暑假進(jìn)行田徑場(chǎng)的改造維修,項(xiàng)目承包單位派遣甲施工隊(duì)進(jìn)場(chǎng)施工,計(jì)劃用40天時(shí)間完成整個(gè)工程.當(dāng)甲施工隊(duì)工作5天后,承包單位接到通知,有一大型活動(dòng)要在該田徑場(chǎng)舉行,要求比原計(jì)劃提前14天完成整個(gè)工程,于是承包單位派遣乙施工隊(duì)與甲施工隊(duì)共同完成剩余工程,結(jié)果按通知要求如期完成了整個(gè)工程.
(1)若乙施工隊(duì)單獨(dú)施工,完成整個(gè)工程需要多少天?
(2)若此項(xiàng)工程甲、乙施工隊(duì)同時(shí)進(jìn)場(chǎng)施工,完成整個(gè)工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1中的長(zhǎng)方形長(zhǎng)為寬的3倍,將四個(gè)這樣的長(zhǎng)方形拼成圖2中的大正方形.
(1)若中間小正方形的面積是,問(wèn)圖1中的長(zhǎng)方形的面積是多少?
(2)若大正方形的面積就比小正方形的面積大,求中間小正方形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲同學(xué)手中藏有三張分別標(biāo)有數(shù)字 、 、1的卡片,乙同學(xué)手中藏有三張分別標(biāo)有數(shù)字1、3、2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為a,b.
(1)請(qǐng)你用樹形圖或列表法列出所有可能的結(jié)果;
(2)現(xiàn)制定一個(gè)游戲規(guī)則:若所選出的a,b能使得ax2+bx+1=0有兩個(gè)不相等的實(shí)數(shù)根,則甲獲勝;否則乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則公平嗎?請(qǐng)用概率知識(shí)解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,∠ACB=90°,CD⊥AB于D,BE:AB=3:5,若CE= ,cos∠ACD= ,求tan∠AEC的值及CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與直線y=﹣x+3相交于坐標(biāo)軸上的A,B兩點(diǎn),頂點(diǎn)為C.
(1)填空:b= , c=;
(2)將直線AB向下平移h個(gè)單位長(zhǎng)度,得直線EF.當(dāng)h為何值時(shí),直線EF與拋物線y=x2+bx+c沒(méi)有交點(diǎn)?
(3)直線x=m與△ABC的邊AB,AC分別交于點(diǎn)M,N.當(dāng)直線x=m把△ABC的面積分為1:2兩部分時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),請(qǐng)解決下列問(wèn)題.
(1)填空:點(diǎn)C的坐標(biāo)為( , ),點(diǎn)D的坐標(biāo)為( , );
(2)設(shè)點(diǎn)P的坐標(biāo)為(a,0),當(dāng)|PD﹣PC|最大時(shí),求α的值并在圖中標(biāo)出點(diǎn)P的位置;
(3)在(2)的條件下,將△BCP沿x軸的正方向平移得到△B′C′P′,設(shè)點(diǎn)C對(duì)應(yīng)點(diǎn)C′的橫坐標(biāo)為t(其中0<t<6),在運(yùn)動(dòng)過(guò)程中△B′C′P′與△BCD重疊部分的面積為S,求S與t之間的關(guān)系式,并直接寫出當(dāng)t為何值時(shí)S最大,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小張的爸爸在上周星期六騎摩托車帶小張和弟弟到離家27千米的游樂(lè)園玩耍,爸爸自己騎摩托車的速度為26千米時(shí),由于摩托車后座只能搭乘一人,搭一人的速度為24千米時(shí),當(dāng)天三人同時(shí)從家出發(fā),弟弟以4千米時(shí)的速度步行,爸爸帶小張騎摩托車行駛一定路程后,小張下車以6千米時(shí)的速度步行前往游樂(lè)園,爸爸返回接弟弟,接上弟弟后直接去游樂(lè)園排隊(duì)買票,爸爸花了5分鐘買好票,此時(shí)小張也正好到達(dá)、爸爸騎摩托車掉頭和停放摩托車的時(shí)間忽略不計(jì)問(wèn):小張搭乘摩托車的路程為______千米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com