【題目】如圖,在△ABC中,∠BAC=90°,點(diǎn)DBC中點(diǎn),AEBCCEAD

(1)求證:四邊形ADCE是菱形;

(2)過點(diǎn)DDFCE于點(diǎn)F,∠B=60°,AB=6,求EF的長.

【答案】(1)見解析;(2)EF=3.

【解析】

(1)∵AE∥BC,CE∥AD,∴四邊形ADCE為平行四邊形,又∵直角三角形斜邊上的中線等于斜邊的一半,∴AD=CD,∴四邊形ADCE是菱形.(2)利用含30°的直角三角形的性質(zhì)求解即可.

(1)證明:∵AEDC,ECAD,

∴四邊形ADCE是平行四邊形,

∵∠BAC=90°,點(diǎn)DBC的中點(diǎn),

ADBDCD

∴平行四邊形ADCE是菱形;

(2)解:∵∠B=60°,ADBD

∴△ABD是等邊三角形,

∴∠ADB=60°,ADAB=6,

ADCE,

∴∠DCE=60°,

CDAD=6,

CFCD=3,

∵四邊形ADCE是菱形,

CECD=6,

EF=3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過點(diǎn)C,過點(diǎn)C作直線MN,使∠BCM=2∠A

1)判斷直線MN⊙O的位置關(guān)系,并說明理由;

2)若OA=4∠BCM=60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為調(diào)查本校學(xué)生平均每天完成作業(yè)所用時(shí)間的情況,隨機(jī)調(diào)查了50名同學(xué),如圖是根據(jù)調(diào)查所得數(shù)據(jù)繪制的統(tǒng)計(jì)圖的一部分.

請根據(jù)以上信息,解答下列問題:

(1)將統(tǒng)計(jì)圖補(bǔ)充完整;

(2)若該校共有1 800名學(xué)生,根據(jù)以上調(diào)查結(jié)果估計(jì)該校全體學(xué)生平均每天完成作業(yè)所用總時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB切O于A、B兩點(diǎn),CD切O于點(diǎn)E,交PA,PB于C、D,若O的半徑為r,PCD的周長等于3r,則tanAPB的值是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,一次函數(shù)為常數(shù),)的圖像與軸、軸分別相交于點(diǎn),半徑為4的⊙軸正半軸相交于點(diǎn),與軸相交于點(diǎn),點(diǎn)在點(diǎn)上方.

1)若直線與弧有兩個(gè)交點(diǎn).

①求的度數(shù);

②用含的代數(shù)式表示,并直接寫出的取值范圍;

2)設(shè),在線段上是否存在點(diǎn),使?若存在,請求出點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】順次連接平面直角坐標(biāo)系xOy中,任意的三個(gè)點(diǎn)P,Q,G.如果∠PQG=90°,那么稱∠PQG為“黃金角”.

已知:點(diǎn)A(0,3),B(2,3),C(3,4),D(4,3).

(1)在A,B,C,D四個(gè)點(diǎn)中能夠圍成“黃金角”的點(diǎn)是   ;

(2)當(dāng)時(shí),直線ykx+3(k≠0)與以OP為直徑的圓交于點(diǎn)Q(點(diǎn)Q與點(diǎn)O,P不重合),當(dāng)∠OQP是“黃金角”時(shí),求k的取值范圍;

(3)當(dāng)Pt,0)時(shí),以OP為直徑的圓與△BCD的任一邊交于點(diǎn)Q,當(dāng)∠OQP是“黃金角”時(shí),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣2x2+4xx軸交于點(diǎn)OA,把拋物線在x軸及其上方的部分記為C1,將C1y鈾為對(duì)稱軸作軸對(duì)稱得到C2,C2x軸交于點(diǎn)B,若直線yx+mC1,C2共有3個(gè)不同的交點(diǎn),則m的取值范圍是(

A. 0<m< B. m

C. 0m D. mm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,ADBC邊的中線,過點(diǎn)ABC的平行線,過點(diǎn)BAD的平行線,兩線交于點(diǎn)E.

1)求證:四邊形ADBE是矩形;

2)連接DE,交AB于點(diǎn)O,若BC=8,AO=,求cosAED的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣1,0),B0,﹣),C2,0),其對(duì)稱軸與x軸交于點(diǎn)D

1)求二次函數(shù)的表達(dá)式及其頂點(diǎn)坐標(biāo);

2)若Py軸上的一個(gè)動(dòng)點(diǎn),連接PD,求PB+PD的最小值;

3Mx,t)為拋物線對(duì)稱軸上一動(dòng)點(diǎn)

①若平面內(nèi)存在點(diǎn)N,使得以A,BM,N為頂點(diǎn)的四邊形為菱形,則這樣的點(diǎn)N共有   個(gè);

②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案