【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣1,0),B0,﹣),C2,0),其對稱軸與x軸交于點(diǎn)D

1)求二次函數(shù)的表達(dá)式及其頂點(diǎn)坐標(biāo);

2)若Py軸上的一個(gè)動(dòng)點(diǎn),連接PD,求PB+PD的最小值;

3Mx,t)為拋物線對稱軸上一動(dòng)點(diǎn)

①若平面內(nèi)存在點(diǎn)N,使得以A,BM,N為頂點(diǎn)的四邊形為菱形,則這樣的點(diǎn)N共有   個(gè);

②連接MAMB,若∠AMB不小于60°,求t的取值范圍.

【答案】(1)拋物線解析式為y=x2x﹣,頂點(diǎn)坐標(biāo)(,﹣);(2)PB+PD的最小值為;(3)①5;②取值范圍是

【解析】

二次函數(shù)的表達(dá)式有三種方法,這題很明顯可以用頂點(diǎn)式以及交點(diǎn)式更方便些;這一題根據(jù)邊的關(guān)系得出∠ABO=30°非常重要,根據(jù)在直角三角形中,30°所對的邊是斜邊的一半把所要求的邊轉(zhuǎn)化,再根據(jù)點(diǎn)到直線垂線段最短求得最小值;第三問ABMN組成菱形,只有AB是定點(diǎn),所以要討論AB是鄰邊還是對角線;最后一問與圓的知識相結(jié)合,有一定的難度,主要根據(jù)∠ABO=30°,AB=2是定值,以AB的垂直平分線與y軸的交點(diǎn)為圓心F,以FA為半徑,則弧AB所對的圓周角為60°,與對稱軸的兩個(gè)交點(diǎn)即為t的取值范圍.

1)方法一:設(shè)二次函數(shù)的表達(dá)式為B0,-)代入解得

∴頂點(diǎn)坐標(biāo)為

方法二:也可以用三點(diǎn)式設(shè)代入三點(diǎn)或者頂點(diǎn)式設(shè)代入兩點(diǎn)求得。

如圖,過P點(diǎn)作DEABE點(diǎn),由題意已知∠ABO=30°.

要使最小,只需要D、PE共線,所以過D點(diǎn)作DEABE點(diǎn),與y軸的交點(diǎn)即為P點(diǎn).

由題意易知,∠ADE=ABO=30°,,

①若A、B、MN為頂點(diǎn)的四邊形為菱形,分兩種情況,由題意知,AB=2,

AB為邊菱形的邊,因?yàn)?/span>M為拋物線對稱軸上的一點(diǎn),即分別以A、B為頂點(diǎn),AB的長為半徑作圓與對稱軸的交點(diǎn)即為M點(diǎn),這樣的M點(diǎn)有四個(gè),如圖

AB為菱形的對角線,根據(jù)菱形的性質(zhì),作AB的垂直平分線與對稱軸的交點(diǎn)即為M點(diǎn).

綜上所述,這樣的M點(diǎn)有5個(gè),所以對應(yīng)的N點(diǎn)有5個(gè).

②如圖,作AB的垂直平分線,與y軸交于F點(diǎn)。

由題意知,AB=2,∠BAF=ABO=30°,∠AFB=120°

∴以F為圓心,AF的長為半徑作圓交對稱軸于MM'點(diǎn),則∠AMB=AM'B=AFB=60°

∵∠BAF=ABO=30°,OA=1

∴∠FAO=30°,AF==FM=FM',OF=,過F點(diǎn)作FGMM'G點(diǎn),已知FG=

,又∵G

M,M'

方法二:設(shè)MM到點(diǎn)F的距離d=AF=也可求得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,點(diǎn)DBC中點(diǎn),AEBC,CEAD

(1)求證:四邊形ADCE是菱形;

(2)過點(diǎn)DDFCE于點(diǎn)F,∠B=60°,AB=6,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線.

(1)求證:該拋物線與x軸總有交點(diǎn);

(2)若該拋物線與x軸有一個(gè)交點(diǎn)的橫坐標(biāo)大于3且小于5,求m的取值范圍;

(3)設(shè)拋物線軸交于點(diǎn)M,若拋物線與x軸的一個(gè)交點(diǎn)關(guān)于直線的對稱點(diǎn)恰好是點(diǎn)M,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一面墻上有一個(gè)矩形的門洞,現(xiàn)要將它改為一個(gè)圓弧形的門洞,圓弧所在的圓外接矩形,已知矩形的高AC=2米,寬CD=米.

(1)求此圓形門洞的半徑;

(2)求要打掉墻體的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的弦,OP⊥OAAB于點(diǎn)P,過點(diǎn)B的直線交OP的延長線于點(diǎn)C,且CP=CB

1)求證:BC⊙O的切線;

2)若⊙O的半徑為,OP=1,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c過點(diǎn)A(﹣4,﹣3),與y軸交于點(diǎn)B,對稱軸是x=﹣3,請解答下列問題:

(1)求拋物線的解析式.

(2)若和x軸平行的直線與拋物線交于C,D兩點(diǎn),點(diǎn)C在對稱軸左側(cè),且CD=8,求△BCD的面積.注:拋物線y=ax2+bx+c(a≠0)的對稱軸是x=﹣.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,身高1.6米的小明從距路燈的底部(點(diǎn)O20米的點(diǎn)A沿AO方向行走14米到點(diǎn)C處,小明在A處,頭頂B在路燈投影下形成的影子在M處.

1)已知燈桿垂直于路面,試標(biāo)出路燈P的位置和小明在C處,頭頂D在路燈投影下形成的影子N的位置.

2)若路燈(點(diǎn)P)距地面8米,小明從AC時(shí),身影的長度是變長了還是變短了?變長或變短了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=6cm,BC=7cm,ABC=30°,點(diǎn)PA點(diǎn)出發(fā),以1cm/s的速度向B點(diǎn)移動(dòng),點(diǎn)QB點(diǎn)出發(fā),以2cm/s的速度向C點(diǎn)移動(dòng).如果P、Q兩點(diǎn)同時(shí)出發(fā),經(jīng)過幾秒后△PBQ的面積等于4cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著新農(nóng)村的建設(shè)和舊城的改造,我們的家園越來越美麗,小明家附近廣場中央新修了一個(gè)圓形噴水池,在水池中心豎直安裝了一根高米的噴水管,它噴出的拋物線形水柱在與池中心的水平距離為米處達(dá)到最高,水柱落地處離池中心米.

(1)請你建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并求出水柱拋物線的函數(shù)解析式;

(2)求出水柱的最大高度是多少?

查看答案和解析>>

同步練習(xí)冊答案