【題目】如圖,在矩形ABCD中,AB4,AD6,點(diǎn)EAD的中點(diǎn),點(diǎn)P為線段AB上一個動點(diǎn),連接EP,將△APE沿EP折疊得到△EPF,連接CECF,當(dāng)△ECF為直角三角形時,AP的長為______.

【答案】1

【解析】

分∠CFE=90°和∠CEF=90°兩種情況求AP得長即可.

當(dāng)∠CFE=90°(如圖所示),ECF是直角三角形,

由折疊可得,∠PFE=A=90°,AE=FE=DE,

∴∠CFP=180°,即點(diǎn)P,F(xiàn),C在一條直線上,

RtCDERtCFE中,

,

RtCDERtCFE(HL),

CF=CD=4,

設(shè)AP=FP=x,則BP=4﹣x,CP=x+4,

RtBCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,

解得x=,即AP=

當(dāng)∠CEF=90°如圖所示),ECF是直角三角形,

FFHABH,作FQADQ,則∠FQE=D=90°,

又∵∠FEQ+∠CED=90°=ECD+∠CED,

∴∠FEQ=ECD,

∴△FEQ∽△ECD,

,即,

解得FQ=,QE=

AQ=HF=,AH=,

設(shè)AP=FP=x,則HP=﹣x,

RtPFH中,HP2+HF2=PF2,即(﹣x)2+2=x2,

解得x=1,即AP=1.

綜上所述,AP的長為1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在△ABC中,∠A=90°,AB=6,AC=8,點(diǎn)P在邊AC上,且⊙PAB,BC都相切.

(1)求⊙P半徑;

(2)求sin∠PBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,點(diǎn)B、F、C、E在同一直線上,AC、DF相交于點(diǎn)G,ABBE,垂足為B,DEBE,垂足為E,且AC=DF,BF=EC.求證:

(1)ABC≌△DEF;

(2)FG=CG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一不透明的袋子中裝有2個白球和1個紅球,這些球除顏色不同外其余都相同,攪勻后,

(1)從中一次性摸出兩只球,用樹狀圖或列表表示其中一個是紅球另一個是白球的所有結(jié)果并求其概率.

(2)向袋子中放入若干個紅球(與原紅球相同),攪勻后,從中任取一個球是紅球的概率為,求放入紅球的個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知拋物線yax2bxc經(jīng)過點(diǎn)A(1,0),點(diǎn)B(3,0)和點(diǎn)C(0,3)

(1)求拋物線的解析式和頂點(diǎn)E的坐標(biāo);

(2)點(diǎn)C是否在以BE為直徑的圓上?請說明理由;

(3)點(diǎn)Q是拋物線對稱軸上一動點(diǎn),點(diǎn)R是拋物線上一動點(diǎn),是否存在點(diǎn)QR,使以QR、C、B為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn)QR的坐標(biāo),若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=DAE


1)求證:BD=CE;
2)若點(diǎn)M,N分別是BD,CE的中點(diǎn),如圖2,連接AM,AN,MN,若AC=6,AE=4,∠EAC=60°,求AN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,ABC的三個頂點(diǎn)的坐標(biāo)分別為A(1,5)B(1,-2),C(4,0).

1)請在圖中畫出ABC關(guān)于y軸對稱的.

2)求ABC的面積.

3)在y軸上畫出點(diǎn)P,使PA+PC的值最小,保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的st的關(guān)系.

(1)L1表示哪輛汽車到甲地的距離與行駛時間的關(guān)系?

(2)汽車B的速度是多少?

(3)求L1,L2分別表示的兩輛汽車的st的關(guān)系式.

(4)2小時后,兩車相距多少千米?

(5)行駛多長時間后,A、B兩車相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綠水青山就是金山銀山,為保護(hù)生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:

村莊

清理養(yǎng)魚網(wǎng)箱人數(shù)/

清理捕魚網(wǎng)箱人數(shù)/

總支出/

A

15

9

57000

B

10

16

68000

(1)若兩村清理同類漁具的人均支出費(fèi)用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費(fèi)用各是多少元;

(2)在人均支出費(fèi)用不變的情況下,為節(jié)約開支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?

查看答案和解析>>

同步練習(xí)冊答案