【題目】對于實數(shù)a、b,定義一種運算“”為:ab=a2+ab﹣2,有下列命題: ①13=2;
②方程x1=0的根為:x1=﹣2,x2=1;
③不等式組 的解集為:﹣1<x<4;
④點( , )在函數(shù)y=x(﹣1)的圖象上.
其中正確的是( )
A.①②③④
B.①③
C.①②③
D.③④
【答案】C
【解析】解:13=12+1×3﹣2=2,所以①正確; ∵x1=0,
∴x2+x﹣2=0,
∴x1=﹣2,x2=1,所以②正確;
∵(﹣2)x﹣4=4﹣2x﹣2﹣4=﹣2x﹣2,1x﹣3=1+x﹣2﹣3=x﹣4,
∴ ,解得﹣1<x<4,所以③正確;
∵y=x(﹣1)=x2﹣x﹣2,
∴當x= 時,y= ﹣ ﹣2=﹣ ,所以④錯誤.
故選C.
【考點精析】掌握一元一次不等式組的解法和有理數(shù)的四則混合運算是解答本題的根本,需要知道解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 );在沒有括號的不同級運算中,先算乘方再算乘除,最后算加減.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點M、N分別是正五邊形ABCDE的邊BC、CD上的點,且BM=CN,AM交BN于點P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉60,得到△BAE,連接ED,若BC=5,BD=4,則有以下四個結論:①△BDE是等邊三角形;②AE∥BC;③△ADE的周長是9;④∠ADE=∠BDC。其中正確結論的序號是( )
A. ②③④ B. ①③④ C. ①②④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在⊙O中,AB為直徑,點C為圓上一點,將劣弧 沿弦AC翻折交AB于點D,連結CD.
(1)如圖1,若點D與圓心O重合,AC=2,求⊙O的半徑r;
(2)如圖2,若點D與圓心O不重合,∠BAC=25°,請直接寫出∠DCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,過點A、C、D作拋物線y=ax2+bx+c(a≠0),與x軸的另一交點為E,連結CE,點A、B、D的坐標分別為(﹣2,0)、(3,0)、(0,4).
(1)求拋物線的解析式;
(2)已知拋物線的對稱軸l交x軸于點F,交線段CD于點K,點M、N分別是直線l和x軸上的動點,連結MN,當線段MN恰好被BC垂直平分時,求點N的坐標;
(3)在滿足(2)的條件下,過點M作一條直線,使之將四邊形AECD的面積分為3:4的兩部分,求出該直線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,S△DEF:S△ABF=4:25,則DE:EC=( )
A.2:5
B.2:3
C.3:5
D.3:2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°
(1)求∠GFC的度數(shù):
(2)求證:DM∥BC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com