【題目】如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,過點(diǎn)CCEBD,且CEBD

1)求證:四邊形OCED是矩形;

2)連接AECD于點(diǎn)G,若AECD

①求sinCAG的值;

②若菱形ABCD的邊長(zhǎng)為6cm,點(diǎn)P為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A重合),連接DP,一動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以1cm/s的速度沿線段DP勻速運(yùn)動(dòng)到點(diǎn)P,再以cm/s的速度沿線段PA勻速運(yùn)動(dòng)到點(diǎn)A,到達(dá)點(diǎn)A后停止運(yùn)動(dòng),當(dāng)點(diǎn)Q沿上述路線運(yùn)動(dòng)到點(diǎn)A所需要的時(shí)間最短時(shí),求AP的長(zhǎng)和點(diǎn)Q走完全程所需的時(shí)間t

【答案】1)見解析;(2)① ;②

【解析】

1)首先證明四邊形OCED是平行四邊形,再根據(jù)∠COD90°推出是矩形.

2)①由DEAC,DEOCOA,推出,設(shè)DGm,則CG2mDCAD3m,求出AC即可解決問題.

②過點(diǎn)PPTACT.由sinPAT,推出PTPA,由點(diǎn)Q的運(yùn)動(dòng)時(shí)間tPD+PT,根據(jù)垂線段最短可知,當(dāng)D,P,T共線,且DTAC時(shí),PD+PT的值最小,最小值=線段OD的長(zhǎng).

1)證明:∵四邊形ABCD是菱形,

ACBDOBOD,

ECBD,

ECOD,

ECOD,

∴四邊形OCED是平行四邊形,

∵∠COD90°

∴四邊形OCED是矩形.

2)解:①∵四邊形OCED是矩形,

DEAC,DEOCOA

,設(shè)DGm,則CG2m,DCAD3m,

AECD

∴∠AGD=∠AGC90°,

AG

AC,

sinCAG

②過點(diǎn)PPTACT

sinPAT

PTPA,

∵點(diǎn)Q的運(yùn)動(dòng)時(shí)間tPD+PT,

根據(jù)垂線段最短可知,當(dāng)D,P,T共線,且DTAC時(shí),PD+PT的值最小,最小值=線段OD的長(zhǎng),

由(2)可知3m6,

m2,

ACOA,

∵∠AOD90°

OD,

DEOA

,

OPPD,此時(shí)AP,

∴滿足條件的PA的值為,點(diǎn)Q走完全程所需的時(shí)間ts).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,AD=5,點(diǎn)EDC上,將矩形ABCD沿AE折疊,點(diǎn)D恰好落在BC邊上的點(diǎn)F處,那么sinEFC的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知A01),B10,1),C94).

1)在網(wǎng)格中畫出過A、BC三點(diǎn)的圓和直線的圖像;

2)已知P是直線上的點(diǎn),且APB是直角三角形,那么符合條件的點(diǎn)P共有 個(gè);

3)如果直線k>0)上有且只有二個(gè)點(diǎn)Q與點(diǎn)A、點(diǎn)B兩點(diǎn)構(gòu)成直角ABQ,則k

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線C1yx2+6x+2的頂點(diǎn)為M,與y軸相交于點(diǎn)N,先將拋物線C1沿x軸翻折,再向右平移p個(gè)單位長(zhǎng)度后得到拋物線C2,直線lykx+b經(jīng)過M,N兩點(diǎn).

1)求點(diǎn)M的坐標(biāo),并結(jié)合圖象直接寫出不等式x2+6x+2kx+b的解集;

2)若拋物線C2的頂點(diǎn)D與點(diǎn)M關(guān)于原點(diǎn)對(duì)稱,求p的值及拋物線C2的解析式;

3)若拋物線C1x軸的交點(diǎn)為E、F,試問四邊形EMBD是何種特殊四邊形?并說明其理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,ABAC,D點(diǎn)為RtABC外一點(diǎn),且BDCD,DF為∠BDA的平分線,當(dāng)∠ACD15°,下列結(jié)論:①∠ADC45°;②ADAF;③AD+AFBD;④BCCE2D,其中正確的是( )

A.①③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在向貧困地區(qū)捐書活動(dòng)中全體師生積極捐書.為了解所捐書籍的種類,某同學(xué)對(duì)部分書籍進(jìn)行了抽樣調(diào)查,并根據(jù)調(diào)查數(shù)據(jù)繪制了如圖所示不完整統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下面問題:

1)本次抽樣調(diào)查的書籍有多少本?請(qǐng)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

2)求出圖中表示科普類書籍的扇形圓心角度數(shù);

3)本次活動(dòng)師生共捐書本,請(qǐng)估計(jì)有多少本文學(xué)類書籍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠B30°,且BCCA,將△ABC沿AC翻折至△ABCABCD于點(diǎn)E,連接BD.若AB3,則BD的長(zhǎng)度為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)B在第一象限,BAx軸于點(diǎn)A,反比例函數(shù)yx0)的圖象與線段AB相交于點(diǎn)C,C是線段AB的中點(diǎn),點(diǎn)C關(guān)于直線yx的對(duì)稱點(diǎn)C'的坐標(biāo)為(m,6)(m6),若△OAB的面積為12,則k的值為( 。

A.4B.6C.8D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,ECD的中點(diǎn),連接AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F,連接BDAFH,AD=10,且tanEFC=,那么AH的長(zhǎng)為( 。

A. B. C. 10D. 5

查看答案和解析>>

同步練習(xí)冊(cè)答案