【題目】如圖,△ACE是以□ABCD的對角線AC為邊的等邊三角形,點C與點E關(guān)于x軸對稱.若E點的坐標(biāo)是(7,-3 ),則D點的坐標(biāo)是 ( )

A.(4,0)
B.( ,0)
C.(5,0)
D.( ,0)

【答案】C
【解析】試題解析:如圖,

∵點C與點E關(guān)于x軸對稱,E點的坐標(biāo)是(7,-3 ),
∴C的坐標(biāo)為(7,3 ),
∴CH=3 ,CE=6 ,
∵△ACE是以ABCD的對角線AC為邊的等邊三角形,
∴AC=6 ,
∴AH=9,
∵OH=7,
∴AO=DH=2,
∴OD=5,
∴D點的坐標(biāo)是(5,0),
所以答案是(5,0).
【考點精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】英國曼徹斯特大學(xué)的兩位科學(xué)家因為成功地從石墨中分離出石墨烯,榮獲了諾貝爾物理學(xué)獎.石墨烯的理論厚度僅0.000 000 000 34米,將這個數(shù)用科學(xué)記數(shù)法表示為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,且OA=2,OC=3

(1)求拋物線的解析式;

(2)作RtOBC的高OD,延長OD與拋物線在第一象限內(nèi)交于點E,求點E的坐標(biāo);

(3)在x軸上方的拋物線上,是否存在一點P,使四邊形OBEP是平行四邊形?若存在,求出點P的坐標(biāo);若不存在,請說明理由;

在拋物線的對稱軸上,是否存在上點Q,使得BEQ的周長最小?若存在,求出點Q的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【探索新知】
已知平面上有n(n為大于或等于2的正整數(shù))個點A1 , A2 , A3 , …An , 從第1個點A1開始沿直線滑動到另一個點,且同時滿足以下三個條件:①每次滑動的距離都盡可能最大;②n次滑動將每個點全部到達(dá)一次;③滑動n次后必須回到第1個點A1 , 我們稱此滑動為“完美運動”,且稱所有點為“完美運動”的滑動點,記完成n個點的“完美運動”的路程之和為Sn
(1)如圖1,滑動點是邊長為a的等邊三角形三個頂點,此時S3=;

(2)如圖2,滑動點是邊長為a,對角線(線段A1A2、A2A4)長為b的正方形四個頂點,此時S4=
【深入研究】
現(xiàn)有n個點恰好在同一直線上,相鄰兩點距離都為1,

(3)如圖3,當(dāng)n=3時,直線上的點分別為A1、A2、A3
為了完成“完美運動”,滑動的步驟給出如圖4所示的兩種方法:
方法1:A1→A3→A2→A1 , 方法2:A1→A2→A3→A1
①其中正確的方法為
A.方法1 B.方法2 C.方法1和方法2
②完成此“完美運動”的S3=


(4)當(dāng)n分別取4,5時,對應(yīng)的S4= , S5=
(5)若直線上有n個點,請用含n的代數(shù)式表示Sn

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,小紅將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測得AB=15,AD=12在進(jìn)行如下操作時遇到了下面的幾個問題,請你幫助解決

(1)將EFG的頂點G移到矩形的頂點B處,再將三角形繞點B順時針旋轉(zhuǎn)使E點落在CD邊上,此時,EF恰好經(jīng)過點A(如圖2)求FB的長度

(2)在(1)的條件下,小紅想用EFG包裹矩形ABCD,她想了兩種包裹的方法如圖3、圖4,請問哪種包裹紙片的方法使得未包裹住的面積大?(紙片厚度忽略不計)請你通過計算說服小紅。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】愷桐超市購進(jìn)一批四階魔方,按進(jìn)價提高40%后標(biāo)價,為了讓利于民,增加銷量,超市決定打八折出售,這時每個魔方的售價為28元.
(1)求魔方的進(jìn)價?
(2)超市賣出一半后,正好趕上雙十一促銷,商店決定將剩下的魔方以每3個80元的價格出售,很快銷售一空,這批魔方超市共獲利2800元,求該超市共購進(jìn)四階魔方多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,對角線AC、BD相交于點O,BD=2AD,E、F、G分別是OC、OD,AB的中點.下列結(jié)論:①EG=EF; ②△EFG≌△GBE; ③FB平分∠EFG;④EA平分∠GEF;⑤四邊形BEFG是菱形.
其中正確的是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個角的度數(shù)為31°42′,那么它的補角的度數(shù)為°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x=﹣1是方程2x+a=0的解,則a=_____

查看答案和解析>>

同步練習(xí)冊答案