【題目】【探索新知】
已知平面上有n(n為大于或等于2的正整數(shù))個點A1 , A2 , A3 , …An , 從第1個點A1開始沿直線滑動到另一個點,且同時滿足以下三個條件:①每次滑動的距離都盡可能最大;②n次滑動將每個點全部到達一次;③滑動n次后必須回到第1個點A1 , 我們稱此滑動為“完美運動”,且稱所有點為“完美運動”的滑動點,記完成n個點的“完美運動”的路程之和為Sn .
(1)如圖1,滑動點是邊長為a的等邊三角形三個頂點,此時S3=;
(2)如圖2,滑動點是邊長為a,對角線(線段A1A2、A2A4)長為b的正方形四個頂點,此時S4= .
【深入研究】
現(xiàn)有n個點恰好在同一直線上,相鄰兩點距離都為1,
(3)如圖3,當n=3時,直線上的點分別為A1、A2、A3 .
為了完成“完美運動”,滑動的步驟給出如圖4所示的兩種方法:
方法1:A1→A3→A2→A1 , 方法2:A1→A2→A3→A1 .
①其中正確的方法為 .
A.方法1 B.方法2 C.方法1和方法2
②完成此“完美運動”的S3= .
(4)當n分別取4,5時,對應的S4= , S5=
(5)若直線上有n個點,請用含n的代數(shù)式表示Sn .
【答案】
(1)3a
(2)2a+2b
(3)A;4
(4)8;12
(5)
解:n 為奇數(shù)時:Sn=n﹣1+n﹣2+…+1+ ﹣1= ;
n 為偶數(shù)時:Sn=n﹣1+n﹣2+…+1+ =
【解析】解:(1)如圖1,∵滑動點是邊長為a的等邊三角形三個頂點,
∴S3=3a,
所以答案是:3a;(2)如圖2,∵滑動點是邊長為a,對角線長為b的正方形四個頂點,
∴S4=2a+2b,
所以答案是:2a+2b;(3)如圖4,①∵方法2 是錯的,不滿足第①個條件,每一次距離要是最大的,
∴方法1正確,
故選A;②如圖3,S3=2+1+1=4,
所以答案是:4;(4)根據(jù)條件:①每次滑動的距離都盡可能最大;②n次滑動將每個點全部到達一次;③滑動n次后必須回到第1個點A1 , 可得:
S4=3+2+1+2=8,
S5=4+3+2+1+2=12,
所以答案是:8,12;
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( 。
A.一個游戲的中獎率是1%,則做100次這樣的游戲一定會中獎
B.一組數(shù)據(jù)6,8,7,9,7,10的眾數(shù)和中位數(shù)都是7
C.為了解全國中學生的心理健康情況,應該采用全面調查的方式
D.若甲乙兩人六次跳遠成績的方差S=0.1,S=0.03,則乙的成績更穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是⊙O外一點,PA切⊙O于點A,AB是⊙O的直徑,連接OP,過點B作BC∥OP交⊙O于點C,連接AC交OP于點D.
(1)求證:PC是⊙O的切線;
(2)若PD=cm,AC=8cm,求圖中陰影部分的面積;
(3)在(2)的條件下,若點E是弧AB的中點,連接CE,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)y=kx.
(1)若函數(shù)圖象經過第二、四象限,則k的范圍是什么?
(2)點(1,-2)在它的圖象上,求它的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)2+(﹣3)+(﹣6)+8
(2)1﹣(﹣4)÷22×
(3)( ﹣ + )÷(﹣ )
(4)﹣12×8﹣8×( )3+4÷ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ACE是以□ABCD的對角線AC為邊的等邊三角形,點C與點E關于x軸對稱.若E點的坐標是(7,-3 ),則D點的坐標是 ( )
A.(4,0)
B.( ,0)
C.(5,0)
D.( ,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩塊全等的三角板如圖1擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖1中△A1B1C繞點C順時針旋轉45°得圖2,點P1是A1C與AB的交點,點Q是A1B1與BC的交點,求證:CP1=CQ;
(2)在圖2中,若AP1=a,則CQ等于多少?
(3)將圖2中△A1B1C繞點C順時針旋轉到△A2B2C(如圖3),點P2是A2C與AP1的交點.當旋轉角為多少度時,有△AP1C∽△CP1P2?這時線段CP1與P1P2之間存在一個怎樣的數(shù)量關系?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com