【題目】已知:如圖1,AB=AC,點(diǎn)A是線(xiàn)段DE上一點(diǎn),∠BAC=90°,BD⊥DE,CE⊥DE,
(1)求證:DE=BD+CE.
(2)如果是如圖2這個(gè)圖形,你能得到什么結(jié)論?并證明你的結(jié)論.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】
(1)根據(jù)全等三角形的判定證明△ADB≌△CEA即可求解;
(2)根據(jù)全等三角形的判定證明△ADB≌△CEA,即可得到結(jié)論.
證明:(1)∵BD⊥DE,CE⊥DE,
∴∠D=∠E=90°,
∴∠DBA+∠DAB=90°,
∵∠BAC=90°,
∴∠DAB+∠CAE=90°,
∴∠DBA=∠CAE,
∵AB=AC,
∴△ADB≌△CEA,
∴BD=AE,CE=AD,
∴DE=AD+AE=CE+BD;
(2)BD=DE+CE,理由是:
∵BD⊥DE,CE⊥DE,
∴∠ADB=∠AEC=90°,
∴∠ABD+∠BAD=90°,
∵∠BAC=90°,
∴∠ABD+∠EAC=90°,
∴∠BAD=∠EAC,
∵AB=AC,
∴△ADB≌△CEA,
∴BD=AE,CE=AD,
∵AE=AD+DE,
∴BD=CE+DE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)O在線(xiàn)段AB上,AB=6,OC為射線(xiàn),且∠BOC=45°.動(dòng)P以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā),沿射線(xiàn)OC做勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t 秒.
(1)如圖1,若AO=2.
①當(dāng) t=6秒時(shí),則OP= ,S△ABP= ;
②當(dāng)△ABP與△PBO相似時(shí),求t的值;
(2)如圖2,若點(diǎn)O為線(xiàn)段AB的中點(diǎn),當(dāng)AP=AB時(shí),過(guò)點(diǎn)A作AQ∥BP,并使得∠QOP=∠B,求AQBP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】碼頭工人往一艘輪船上裝載貨物,裝完貨物所需時(shí)間 y(分鐘)與裝載速度 x(噸/分鐘)之間的函數(shù)關(guān)系如圖.
(1)求y與x之間的函數(shù)表達(dá)式:
(2)若要求在2小時(shí)至2.5小時(shí)內(nèi)(包括2小時(shí)與2.5小時(shí))裝完這批貨物,求裝貨速度的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“不覽夜景,味道重慶.”乘游船也有兩江,猶如在星河中暢游,是一個(gè)近距離認(rèn)識(shí)重慶的最佳窗口.“兩江號(hào)”游輪經(jīng)過(guò)核算,每位游客的接待成本為30元.根據(jù)市場(chǎng)調(diào)查,同一時(shí)段里,票價(jià)為40元時(shí),每晚將售出船票600張,而票價(jià)每漲1元,就會(huì)少售出10張船票.
(1)若該游輪每晚獲得10000元利潤(rùn)的同時(shí),適當(dāng)控制游客人數(shù),保持應(yīng)有的服務(wù)水準(zhǔn),則票價(jià)應(yīng)定為多少元?
(2)春節(jié)期間,工商管理部門(mén)規(guī)定游輪船票單價(jià)不能低于44元,同時(shí)該游輪為提高市場(chǎng)占有率,決定每晚售出船票數(shù)量不少于540張,則票價(jià)應(yīng)定為多少元,才能使每晚獲得的利潤(rùn)最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料并解決問(wèn)題
進(jìn)位制是一種記數(shù)方式,可以用有限的數(shù)字符號(hào)代表所有的數(shù)值,使用數(shù)字符號(hào)的數(shù)目稱(chēng)為基數(shù),基數(shù)為n,即可稱(chēng)n進(jìn)制,F(xiàn)在最常用的是十進(jìn)制,通常使用10個(gè)阿拉伯?dāng)?shù)字0~9進(jìn)行記數(shù),特點(diǎn)是逢十進(jìn)一。
對(duì)于任意一個(gè)用進(jìn)制表示的數(shù),通常使用n個(gè)阿拉伯?dāng)?shù)字進(jìn)行記數(shù),特點(diǎn)是逢n進(jìn)一。我們可以通過(guò)以下方式把它轉(zhuǎn)化為十進(jìn)制:
例如:五進(jìn)制數(shù),記作: ,
七進(jìn)制數(shù),記作:
(1)請(qǐng)將以下兩個(gè)數(shù)轉(zhuǎn)化為十進(jìn)制: ____________, ____________ ;
(2)若一個(gè)正數(shù)可以用七進(jìn)制表示為,也可以用五進(jìn)制表示為,請(qǐng)求出這個(gè)數(shù)并用十進(jìn)制表示。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是平行四邊形,點(diǎn)A、B在x軸上,點(diǎn)C、D在第二象限,點(diǎn)M是BC中點(diǎn).已知AB=6,AD=8,∠DAB=60°,點(diǎn)B的坐標(biāo)為(-6,0).
(1)求點(diǎn)D和點(diǎn)M的坐標(biāo);
(2)如圖①,將□ABCD沿著x軸向右平移a個(gè)單位長(zhǎng)度,點(diǎn)D的對(duì)應(yīng)點(diǎn)和點(diǎn)M的對(duì)應(yīng)點(diǎn)恰好在反比例函數(shù)(x>0)的圖像上,請(qǐng)求出a的值以及這個(gè)反比例函數(shù)的表達(dá)式;
(3)如圖②,在(2)的條件下,過(guò)點(diǎn)M,作直線(xiàn)l,點(diǎn)P是直線(xiàn)l上的動(dòng)點(diǎn),點(diǎn)Q是平面內(nèi)任意一點(diǎn),若以,P、Q為頂點(diǎn)的四邊形是矩形,請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)O出發(fā),按向上、向右、向下、向右的方向不斷地移動(dòng),每次移動(dòng)1個(gè)單位長(zhǎng)度,得到點(diǎn)A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么點(diǎn)A2 019的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB,以O為圓心,以任意長(zhǎng)為半徑作弧,分別交OA,OB于F,E兩點(diǎn),再分別以E,F為圓心,大于EF長(zhǎng)為半徑作圓弧,兩條圓弧交于點(diǎn)P,作射線(xiàn)OP,過(guò)點(diǎn)F作FD∥OB交OP于點(diǎn)D.
(1)若∠OFD=116°,求∠DOB的度數(shù);
(2)若FM⊥OD,垂足為M,求證:△FMO≌△FMD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過(guò)點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)判斷DF與是⊙O的位置關(guān)系,并證明你的結(jié)論。
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com