【題目】如圖,正方形OABC,ADEF的頂點A,D,C在坐標軸上,點F在AB 上,點B,E在函數(shù) )的圖象上,若陰影部分的面積為12 - ,則點E的坐標是

【答案】( ,
【解析】∵四邊形OABC,ADEF為正方形,點B、E在函數(shù) )的圖象上,

∴S正方形OABC =S矩形ODEG=4,

∴S矩形GFBC =S正方形ADEF,

∵陰影部分的面積為12 - ,

∴S矩形GFBC =S正方形ADEF=6- ,

∴y=DE= ,

∴x=OD= ,

∴E點坐標為( , ).

根據(jù)正方形的性質,和點B、E在反比例函數(shù)的圖象上,得到S正方形OABC =S矩形ODEG,S矩形GFBC =S正方形ADEF,得到點E的坐標.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.

(1)求證:AE=BF.
(2)連接GB,EF,求證:GB∥EF.
(3)若AE=1,EB=3,求DG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(1,2)、B(3,1)、C(2,﹣1)

(1)在圖中作出△ABC關于y軸對稱的△A1B1C1;

(2)寫出A1、B1、C1的坐標;

(3)求△A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC與點D,點E為BC的中點,連接DE.

(1)求證:DE是半圓⊙O的切線.
(2)若∠BAC=30°,DE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線AB的函數(shù)表達式為yx+4,交x軸于點A,交y軸于點B,動點C從點A出發(fā),以每秒2個單位長度的速度沿x軸正方向運動,設運動時間為t秒.

1)求點A、B兩點的坐標;

2)當t為何值時,經(jīng)過B、C兩點的直線與直線AB關于y軸對稱?并求出直線BC的函數(shù)關系式;

3)在第(2)問的前提下,在直線AB上是否存在一點P,使得SBCP2SABC?如果存在,請求出此時點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,D是BC上一點,△ABC∽△ADE,

求證:∠1=∠2=∠3 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等邊三角形,BD平分∠ABC,延長BCE,使得CECD

求證:BDDE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,DAB的中點,點E、F分別在AC、BC邊上運動E不與點A、C重合,且保持,連接DEDF、在此運動變化的過程中,有下列結論:;四邊形CEDF的面積隨點E、F位置的改變而發(fā)生變化;;以上結論正確的是______只填序號

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC和DEB中,已知AB=DE,還需添加兩個條件才能使ABC≌△DEC,不能添加的一組條件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

同步練習冊答案