【題目】有A、B兩種飲料,這兩種飲料的體積和單價如表:

類型

A

B

單瓶飲料體積/升

1

2.5

單價/元

3

4


(1)小明購買A、B兩種飲料共13升,用了25元,他購買A,B兩種飲料個各多少瓶?
(2)若購買A、B兩種飲料共36瓶,且A種飲料的數(shù)量不多于B種飲料的數(shù)量,則最少可以購買多少升飲料?

【答案】
(1)解:設(shè)他購買了A種飲料a瓶,B種飲料b瓶.

則由題意可得

解得

故他購買了3瓶A種飲料,4瓶B種飲料;


(2)解:設(shè)購買了A種飲料x瓶,購買了y升飲料,

則x≥0且x≤36﹣x,解得0≤x≤18,

由題意可得y=x+2.5(36﹣x)﹣﹣1.5x+90,

∵﹣1.5<0,

∴y隨的增大而減小,

當(dāng)x=18時,ymin=﹣1.5×18+90=63.

∴最少可以購買63升飲料


【解析】(1)設(shè)他購買了A種飲料a瓶,B種飲料b瓶,根據(jù)“購買A、B兩種飲料共13升;用了25元”列方程組求解即可;(2)設(shè)購買了A種飲料x瓶,購買了y升飲料,首先確定自變量的取值范圍,然后得到有關(guān)飲料總升和飲料瓶數(shù)之間的關(guān)系得到函數(shù)解析式,確定函數(shù)的最值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市新建火車站廣場將投入使用,計劃在廣場內(nèi)種植A,B兩種花木共4000棵,若A花木數(shù)量是B花木數(shù)量的2倍還多400棵.
(1)求A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排24人同時種植這兩種花木,每人每天能種植A花木70棵或B花木60棵,應(yīng)怎樣分別安排種植A花木和種植B花木的人數(shù),才能確保同時完成各自的任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前,我市正在積極創(chuàng)建文明城市,交通部門一再提醒司機:為了安全,請勿超速,并再進一步完善各類監(jiān)測系統(tǒng),如圖,在某公路直線路段MN內(nèi)限速60千米/小時,為了檢測車輛是否超速,在公路MN旁設(shè)立了觀測點C,從觀測點C測得一小車從點A到達點B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車超速了嗎?請說明理由.(參考數(shù)據(jù): =1.41, =1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲從商販A處購買了若干斤西瓜,又從商販B處購買了若干斤西瓜.A、B兩處所購買的西瓜重量之比為32然后將買回的西瓜以從A、B兩處購買單價的平均數(shù)為單價全部賣給了乙,結(jié)果發(fā)現(xiàn)他賠錢了,這是因為( 。

A. 商販A的單價大于商販B的單價

B. 商販A的單價等于商販B的單價

C. 商版A的單價小于商販B的單價

D. 賠錢與商販A、商販B的單價無關(guān)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定ABC≌△ADC的是( 。

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一扇窗戶,窗框為鋁合金材料,下面是由兩個大小相等的長方形窗框構(gòu)成,上面是由三個大小相等的扇形組成的半圓窗框構(gòu)成,窗戶半圓部分安裝彩色玻璃,兩個長方形部分安裝透明玻璃(本題中π3,長度單位為米)

(1)一扇這樣窗戶一共需要鋁合金多少米?(用含x,y的代數(shù)式表示)

(2)一扇這樣窗戶一共需要玻璃多少平方米?鋁合金窗框?qū)挾群雎圆挥?/span>(用含x,y的代數(shù)式表示)

(3)某公司需要購進20扇窗戶,在同等質(zhì)量的前提下,甲、乙兩個廠商分別給出如下報價:

鋁合金(/)

彩色玻璃(平方米/)

透明玻璃(平方米/)

甲廠商

200

80

不超過100平方米的部分,90/平方米,超過100平方米的部分,70/平方米

乙廠商

220

60

80/平方米,每購1平方米透明玻璃送0.1米鋁合金

當(dāng)x2y3時,該公司在哪家廠商購買窗戶合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.
(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;
(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為等邊三角形,點D,E分別在BC,AC邊上,且AECD,AD,BE相交于點PBQADQ,PQ=3,PE=1.

(1)求證:ABE≌△CAD;

(2) BE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市規(guī)定了每月用水18立方米以內(nèi)(含18立方米)和用水18立方米以上兩種不同的收費標(biāo)準(zhǔn).該市的用戶每月應(yīng)交水費y(元)是用水量x(立方米)的函數(shù),其圖象如圖所示.

(1)若某月用水量為18立方米,則應(yīng)交水費多少元?
(2)求當(dāng)x>18時,y關(guān)于x的函數(shù)表達式.若小敏家某月交水費81元,則這個月用水量為多少立方米?

查看答案和解析>>

同步練習(xí)冊答案