【題目】探究:如圖①,在Rt△ABC中,∠ACB=90°,AC=BC,直線l經(jīng)過點C,且點A、B在直線l的同側(cè),過點A、B分別作直線l的垂線,垂足分別為點D、E.求證:DE=AD+BE.
應(yīng)用:如圖②,在Rt△ABC中,∠ACB=90°,AC=BC,直線l經(jīng)過點C,且點A、B在直線l的異側(cè),過點A、B分別作直線l的垂線,垂足分別為點D、E.直接寫出線段AD、BE、DE之間的相等關(guān)系.
【答案】探究:證明見解析;應(yīng)用: AD=BE﹣DE,理由見解析.
【解析】
根據(jù)垂直得出∠ADC=∠ACB=∠BEC=90°,根據(jù)三角形的內(nèi)角和定理和鄰補(bǔ)角得出∠DAC=∠ECB,根據(jù)AAS證△ADC≌△CEB,推出AD=CE,DC=BE,代入即可.
①∵AD⊥DE,BE⊥DE,∠ACB=90°,∴∠ADC=∠ACB=∠BEC=90°,∴∠DAC+∠DCA=90°,∠DCA+∠ECB=180°﹣90°=90°,∴∠DAC=∠ECB.在△ADC和△CEB中,∵∠ADC=∠CEB,∠DAC=∠ECB,AC=BC,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD,即DE=AD+BE.
②AD=BE﹣DE,理由如下:
∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.
又∵∠ACB=90°,∴∠ACD=∠CBE=90°﹣∠ECB.
在△ACD與△CBE中,∵∠ADC=∠CEB,∠ACD=∠CBE,AC=BC,∴△ACD≌△CBE(AAS),∴CD=BE,AD=CE.
又∵CE=CD﹣DE,∴AD=BE﹣DE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.
(1)在圖1中以格點為頂點畫一個面積為5的等腰直角三角形;
(2)在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2、、 ;
(3)如圖3,點A、B、C是小正方形的頂點,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、C、N三點在同一直線上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△MNC≌△ABC,則∠BCM:∠BCN=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),反比例函數(shù)和二次函數(shù)y=k(x2+x﹣1)的圖象交于點A(1,k)和點B(﹣1,﹣k).
(1)當(dāng)k=﹣2時,求反比例函數(shù)的解析式;
(2)要使反比例函數(shù)和二次函數(shù)都是y隨著x的增大而增大,求k應(yīng)滿足的條件以及x的取值范圍;
(3)設(shè)二次函數(shù)的圖象的頂點為Q,當(dāng)△ABQ是以AB為斜邊的直角三角形時,求k的值.
(4)點C為x軸上一動點,且C點坐標(biāo)為(2k,0),當(dāng)△ABC是以AB為斜邊的直角三角形時,求K的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先計算,再找出規(guī)律,然后根據(jù)規(guī)律進(jìn)行計算.
(1)計算:① ② ③
(2)根據(jù)(1)中的計算,用字母表示出你發(fā)現(xiàn)的規(guī)律.
=__________________
(3)根據(jù)(2)中的結(jié)論,計算下列結(jié)果:
①
②
③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)(﹣20)+(+3)﹣(﹣5)
(2)(﹣5)×6×÷(﹣2)
(3)﹣÷﹣×(﹣9)
(4)(﹣1)4+5÷(﹣)×(﹣6)
(5)(+﹣)×36
(6)﹣1﹣[1+(﹣12)÷6]×(﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】華聯(lián)超市用6000元購進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的多15件,甲、乙兩種商品的進(jìn)價和售價如下表:(注:獲利=售價﹣進(jìn)價)
甲 | 乙 | |
進(jìn)價(元/件) | 22 | 30 |
售價(元/件) | 29 | 40 |
(1)該商場購進(jìn)甲、乙兩種商品各多少件?
(2)該超市將購進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直接寫出計算結(jié)果:
(1) -2-11 = (2) 5-(-12)=
(3) (-5)×(-6) = (4)
(5) = (6) =
(7)-3.5+3.5 = (8) =
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的解題過程:
計算:(-15)÷(-1-3)×6.
解:原式=(-15)÷(-)×6(第一步)
=(-15)÷(-25)(第二步)
=.(第三步)
解答:(1)上面解題過程,從第____步開始錯誤,錯誤的原因是_____.
(2)請寫出正確的解題過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com