【題目】某市一湖的湖心島有一顆百年古樹,當?shù)厝朔Q它為“鄉(xiāng)思柳”,不乘船不易到達,每年初春時節(jié),人們喜歡在“聚賢亭”觀湖賞柳.小紅和小軍很想知道“聚賢亭”與“鄉(xiāng)思柳”之間的大致距離,于是,有一天,他們倆帶著側傾器和皮尺來測量這個距離.測量方法如下:如圖,首先,小軍站在“聚賢亭”的A處,用側傾器測得“鄉(xiāng)思柳”頂端M點的仰角為23°,此時測得小軍的眼睛距地面的高度AB為1.7米,然后,小軍在A處蹲下,用側傾器測得“鄉(xiāng)思柳”頂端M點的仰角為24°,這時測得小軍的眼睛距地面的高度AC為1米.請你利用以上測得的數(shù)據(jù),計算“聚賢亭”與“鄉(xiāng)思柳”之間的距離AN的長(結果精確到1米).(參考數(shù)據(jù):sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)
科目:初中數(shù)學 來源: 題型:
【題目】設△ABC的面積為1.
如圖1,分別將AC,BC邊2等分,D1,E1是其分點,連接AE1,BD1交于點F1,得到四邊形CD1F1E1,其面積S1=.
如圖2,分別將AC,BC邊3等分,D1,D2,E1,E2是其分點,連接AE2,BD2交于點F2,得到四邊形CD2F2E2,其面積S2=;
如圖3,分別將AC,BC邊4等分,D1,D2,D3,E1,E2,E3是其分點,連接AE3,BD3交于點F3,得到四邊形CD3F3E3,其面積S3=;
…
按照這個規(guī)律進行下去,若分別將AC,BC邊(n+1)等分,…,得到四邊形CDnEnFn,其面積S= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“春種一粒粟,秋收萬顆子”,唐代詩人李紳這句詩中的“粟”即谷子(去皮后則稱為“小米”),被譽為中華民族的哺育作物.我省有著“小雜糧王國”的美譽,谷子作為我省雜糧面積為2000萬畝,年總產量為150萬噸,我省谷子平均畝產量為160kg,國內其他地區(qū)谷子的平均畝產量為60kg.請解答下列問題:
(1)求我省2016年谷子的種植面積是多少萬畝.
(2)2017年,若我省谷子的平均畝產量仍保持160kg不變,要使我省谷子的年總產量不低于52萬噸,那么,今年我省至少應再多種植多少萬畝的谷子?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】長度分別為3cm,5cm,7cm,9cm的四根木棒,能搭成(首尾連結)三角形的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】養(yǎng)成良好的早鍛煉習慣,對學生的學習和生活都非常有益,某中學為了了解七年級學生的早鍛煉情況,校政教處在七年級隨機抽取了部分學生,并對這些學生通常情況下一天的早鍛煉時間x(分鐘)進行了調查.現(xiàn)把調查結果分成A、B、C、D四組,如下表所示,同時,將調查結果繪制成下面兩幅不完整的統(tǒng)計圖.
請你根據(jù)以上提供的信息,解答下列問題:
(1)補全頻數(shù)分布直方圖和扇形統(tǒng)計圖;
(2)所抽取的七年級學生早鍛煉時間的中位數(shù)落在 區(qū)間內;
(3)已知該校七年級共有1200名學生,請你估計這個年級學生中約有多少人一天早鍛煉的時間不少于20分鐘.(早鍛煉:指學生在早晨7:00~7:40之間的鍛煉)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法不正確的是( )
A. 等腰三角形是軸對稱圖形
B. 三角相等的三角形是等邊三角形
C. 如果兩個三角形成軸對稱,那么這兩個三角形一定全等
D. 若A,B兩點關于直線MN對稱,則AB垂直平分MN
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式從左到右的變形,是因式分解的是( )
A.x2﹣9+6x=(x+3)(x﹣3)+6x
B.x2﹣8x+16=(x﹣4)2
C.(x+5)(x﹣2)=x2+3x﹣10
D.6ab=2a3b
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】類比、轉化、從特殊到一般等思想方法,在數(shù)學學習和研究中經常用到,請看下面的案例.
(1)如圖1,已知△ABC,分別以AB、AC為邊,在BC同側作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
通過證明△ ADC ≌△ ABE ,得到DC=BE;
(2)如圖2,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,順次連接E、F、G、H,得到四邊形EFGH,我們稱四邊形EFGH為四邊形ABCD的中點四邊形,連接BD,利用三角形中位線的性質,可得EH∥BD,EH= BD,同理可得FG∥BD,F(xiàn)G= BD,所以EH∥FG,EH=FG,所以四邊形EFGH是平行四邊形;
拓展應用
①如圖3,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想四邊形EFGH的形狀,并證明;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,四邊形EFGH的形狀是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com