【題目】若關(guān)于x的不等式x﹣ <1的解集為x<1,則關(guān)于x的一元二次方程x2+ax+1=0根的情況是(
A.有兩個(gè)相等的實(shí)數(shù)根
B.有兩個(gè)不相等的實(shí)數(shù)根
C.無實(shí)數(shù)根
D.無法確定

【答案】C
【解析】解:解不等式x﹣ <1得x<1+ , 而不等式x﹣ <1的解集為x<1,
所以1+ =1,解得a=0,
又因?yàn)椤?a2﹣4=﹣4,
所以關(guān)于x的一元二次方程x2+ax+1=0沒有實(shí)數(shù)根.
故選C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解求根公式(根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根),還要掌握不等式的解集(一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集(即未知數(shù)的取值范圍))的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中, , 、分別是的中點(diǎn).

)求證:

)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公元前5世紀(jì),畢達(dá)哥拉斯學(xué)派中的一名成員希伯索斯發(fā)現(xiàn)了無理數(shù) ,導(dǎo)致了第一次數(shù)學(xué)危機(jī), 是無理數(shù)的證明如下: 假設(shè) 是有理數(shù),那么它可以表示成 (p與q是互質(zhì)的兩個(gè)正整數(shù)).于是( 2=( 2=2,所以,q2=2p2 . 于是q2是偶數(shù),進(jìn)而q是偶數(shù),從而可設(shè)q=2m,所以(2m)2=2p2 , p2=2m2 , 于是可得p也是偶數(shù).這與“p與q是互質(zhì)的兩個(gè)正整數(shù)”矛盾.從而可知“ 是有理數(shù)”的假設(shè)不成立,所以, 是無理數(shù).
這種證明“ 是無理數(shù)”的方法是(
A.綜合法
B.反證法
C.舉反例法
D.數(shù)學(xué)歸納法

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的七邊形ABCDEFG中,AB、ED的延長線相交于O點(diǎn).若圖中∠1、2、3、4的外角的角度和為220°,則∠BOD的度數(shù)是( 。

A. 400 B. 450 C. 500 D. 600

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小剛在課外書中看到這樣一道有理數(shù)的混合運(yùn)算題:

計(jì)算:

她發(fā)現(xiàn),這個(gè)算式反映的是前后兩部分的和,而這兩部分之間存在著某種關(guān)系,利用這種關(guān)系,他順利地解答了這道題。

(1)前后兩部分之間存在著什么關(guān)系?

(2)先計(jì)算哪步分比較簡(jiǎn)便?并請(qǐng)計(jì)算比較簡(jiǎn)便的那部分。

(3)利用(1)中的關(guān)系,直接寫出另一部分的結(jié)果。

(4)根據(jù)以上分析,求出原式的結(jié)果。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從汽車燈的點(diǎn)O處發(fā)出的一束光線經(jīng)燈的反光罩反射后沿CO方向平行射出,如入射光線OA的反射光線為AB,在如圖中所示的截面內(nèi),若入射光線OD經(jīng)反光罩反射后沿DE射出,且的度數(shù)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)探究證明:

在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且ADMN于點(diǎn)D,BEMN于點(diǎn)E,當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:DE=AD+BE;

(2)發(fā)現(xiàn)探究:

當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),(1)中的結(jié)論是否成立,如果不成立,DE、AD、BE應(yīng)滿足的關(guān)系是_____

(3)解決問題:

當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),若BE=8,AD=2,請(qǐng)直接寫出DE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】道路交通管理?xiàng)l例規(guī)定:小汽車在城街上行駛速度不得超過70千米/小時(shí),如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路面對(duì)車速檢測(cè)儀A正前方30B處,過了2秒后,測(cè)得小汽車C與車速檢測(cè)儀A間距離為50米,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,點(diǎn)A、B、C、M、N都在格點(diǎn)上(不寫作法)

(1)ABC關(guān)于直線MN對(duì)稱的A’B’C’:

(2)ABC向上平移兩個(gè)單位得A1B1C1,畫出A1B1C1;

(3)在直線MN上找一點(diǎn)P,使AP+CP的值最。

(4)若網(wǎng)格中最小正方形的邊長為1,直接寫出ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案