【題目】如圖,中,,,的中點(diǎn),若動點(diǎn)點(diǎn)出發(fā),沿著的方向運(yùn)動,連接,當(dāng)是直角三角形時,的值為( )

A.4B.7C.47D.41

【答案】C

【解析】

根據(jù)直角三角形性質(zhì)求出∠AAB的值,然后分情況討論,在點(diǎn)點(diǎn)出發(fā),沿著的方向運(yùn)動過程中,當(dāng)∠BDE=90時,根據(jù)直角三角形斜邊中線性質(zhì),求出AE;再者當(dāng)∠BED=90°根據(jù)情況也求出此時AE的值,綜合得出答案

∵∠ACB=90°,∠ABC=60°,BC=4cm

∴∠A=30°

AB=8cm

當(dāng)∠BDE=90°時,

DBC中點(diǎn)

DEABC斜邊上的中線

AE=AB=4cm

當(dāng)∠BED=90°時,BE=BD=1cm

AE=AB-BE=7cm

AE的長為4cm7cm

所以答案為C選項(xiàng)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等邊ABC邊長為2DBC中點(diǎn),連接AD.點(diǎn)O在線段AD上運(yùn)動(不含端點(diǎn)A、D),以點(diǎn)O為圓心,長為半徑作圓,當(dāng)OABC的邊有且只有兩個公共點(diǎn)時,DO的取值范圍為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點(diǎn)D.

(1)求線段AD的長度;

(2)點(diǎn)E是線段AC上的一點(diǎn),試問:當(dāng)點(diǎn)E在什么位置時,直線ED與⊙O相切?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸相較于A.B兩點(diǎn),與y軸相交于點(diǎn)C0,-3),拋物線的對稱軸為直線x=1.

1)求二次函數(shù)的解析式;

2)若拋物線的頂點(diǎn)為D,點(diǎn)E在拋物線上,且與點(diǎn)C關(guān)于拋物線的對稱軸對稱,直線AE交對稱軸于點(diǎn)F,試判斷四邊形CDEF的形狀,并說明理由;

3)若點(diǎn)Mx軸上,點(diǎn)P在拋物線上,是否存在以點(diǎn)AE,M,P為頂點(diǎn)且以AE為一邊的平行四邊形?若存在,請求出所有滿足要求的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點(diǎn),FAM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長線于點(diǎn)E,交DC于點(diǎn)N

1)求證:△ABM∽△EFA

2)若AB=12BM=5,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,點(diǎn)OAC上,以OA為半徑的OAB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE

1)判斷直線DEO的位置關(guān)系,并說明理由;

2)若AC=6,BC=8,OA=2,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=x+1y軸交于點(diǎn)A,與x軸交于點(diǎn)D,拋物線y= x2+bx+c與直線交于A、E兩點(diǎn),與x軸交于B、C兩點(diǎn),且B點(diǎn)坐標(biāo)為(1,0).在拋物線的對稱軸上找一點(diǎn)M,使|AM﹣MC|的值最大,求出點(diǎn)M的坐標(biāo)__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(0,4)B(1,0),C(5,0),其對稱軸與x軸相交于點(diǎn)M.

(1)求拋物線的解析式和對稱軸;

(2)在拋物線的對稱軸上是否存在一點(diǎn)P,使△PAB的周長最?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;

(3)連接AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,2)請解答下列問題:

(1)畫出ABC關(guān)于y軸對稱的A1B1C1,并寫出A1的坐標(biāo).

(2)畫出ABC繞點(diǎn)B逆時針旋轉(zhuǎn)90°后得到的A2B2C2,并寫出A2的坐標(biāo).

(3)畫出A2B2C2關(guān)于原點(diǎn)O成中心對稱的A3B3C3,并寫出A3的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案