【題目】解方程:

(1)9x-5=2x+23;

(2)2x+3(2x-1)=16-(x+1);

(3);

(4) [ (x-)-8]=x+1.

【答案】(1)x=4;(2)x=2;(3)x=-;(4)x=-7.

【解析】

(1)方程移項合并,將x系數(shù)化為1,即可求出解;

(2)方程去括號,移項合并,將x系數(shù)化為1,即可求出解;

(3)方程變形后,去分母,移項合并,將x系數(shù)化為1,即可求出解;

(4)方程去括號,去分母,去括號,移項合并,將x系數(shù)化為1,即可求出解.

(1)方程移項合并得:7x=28,

解得:x=4;

(2)方程去括號得:2x+6x-3=16-x-1,

移項合并得:9x=18,

解得:x=2;

(3) 方程整理得:

80x-30-250x+40=120-100x,

移項合并得:-70x=110,

解得:x=-;

(4) 去括號得:

移項合并得:x=-7.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點,F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點M,N,則MN的長為()
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC,∠C=90°,∠B=30°,以點A為圓心任意長為半徑畫弧分別交AB,AC于點MN,再分別以點M,N為圓心大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列說法:①AD∠BAC的平分線;②∠ADC=60°;③DAB的垂直平分線上;④SDAC:SABC=1:3.其中正確的是__________________.(填所有正確說法的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算
(1)計算:( 2+| ﹣2|+3tan30°
(2)先化簡,再求值: ÷ ,其中x=﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.
(1)求證:△ACE≌△BCD;
(2)求證:2CD2=AD2+DB2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列解題過程的空白處填上適當?shù)膬?nèi)容(推理的理由或數(shù)學表達式)

如圖,在ABC中,已知∠ADEB,1=2,FGAB于點G.

求證CDAB.

證明:∵∠ADEB(已知),

),

DEBC(已證),

),

又∵∠1=2(已知),

),

CDFG ),

(兩直線平行同位角相等),

FGAB(已知),

∴∠FGB=90°(垂直的定義).

即∠CDBFGB=90°,

CDAB. (垂直的定義).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,P是CD邊上一點,且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀把它均分成四個小長方形,然后按圖②的形狀拼成一個正方形.

(1)你認為圖②中的陰影部分的正方形的邊長等于多少?

(2)請用兩種不同的方法求圖②中陰影部分的面積.

(3)觀察圖②你能寫出下列三個代數(shù)式之間的等量關系嗎?

代數(shù)式:(mn)2,(mn)2,mn.

(4)根據(jù)(3)題中的等量關系,解決如下問題:

已知ab=7,ab=5,求(ab)2的值.(寫出過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形兩邊的長是3和4,第三邊的長是方程 -12x+35=0的根,則該三角形的周長為( 。
A.14
B.12
C.12或14
D.以上都不對

查看答案和解析>>

同步練習冊答案