如圖,已知拋物線y=a(x-1)2+3
3
(a≠0)
經(jīng)過點A(-2,0),拋物線的頂點為D,過O作射線OM∥AD.過頂點D平行于x軸的直線交射線OM于點C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動點P從點O出發(fā),以每秒l個長度單位的速度沿射線OM運動,設點P運動的時間為t(s).問:當t為何值時,四邊形DAOP分別為平行四邊形?直角梯形?等腰梯形?
(3)若OC=OB,動點P和動點Q分別從點O和點B同時出發(fā),分別以每秒l個長度單位和2個長度單位的速度沿OC和BO運動,當其中一個點停止運動時另一個點也隨之停止運動設它們運動的時間為t(s),連接PQ,當t為何值時,四邊形BCPQ的面積最小?并求出最小值.
(4)在(3)中當t為何值時,以O,P,Q為頂點的三角形與△OAD相似?(直接寫出答案)
分析:(1)將A的坐標代入拋物線y=a(x-1)2+3
3
(a≠0)可得a的值,即可得到拋物線的解析式;
(2)易得D的坐標,過D作DN⊥OB于N;進而可得DN、AN、AD的長,根據(jù)平行四邊形,直角梯形,等腰梯形的性質(zhì),用t將其中的關系表示出來,并求解可得答案;
(3)根據(jù)(2)的結(jié)論,易得△OCB是等邊三角形,可得BQ、PE關于t的關系式,將四邊形的面積用t表示出來,進而分析可得最小值及此時t的值,進而可求得PQ的長.
(4)分別利用當△AOD∽△OQP與當△AOD∽△OPQ,得出對應邊比值相等,進而求出即可.
解答:解:(1)∵拋物線y=a(x-1)2+3
3
(a≠0)經(jīng)過點A(-2,0),
∴0=9a+3
3

∴a=-
3
3
,
∴y=-
3
3
(x-1)2+3
3


(2))①∵D為拋物線的頂點,
∴D(1,3
3
),
過D作DN⊥OB于N,則DN=3
3
,AN=3,
∴AD=
32+(3
3
)2
=6,
∴∠DAO=60°.
∵OM∥AD,
①當AD=OP時,四邊形DAOP是平行四邊形,
∴OP=6,
∴t=6.
②當DP⊥OM時,四邊形DAOP是直角梯形,
過O作OH⊥AD于H,AO=2,則AH=1(如果沒求出∠DAO=60°可由Rt△OHA∽Rt△DNA(求AH=1)
∴OP=DH=5,t=5,
③當PD=OA時,四邊形DAOP是等腰梯形,
易證:△AOH≌△CDP,
∴AH=CP,
∴OP=AD-2AH=6-2=4,
∴t=4.
綜上所述:當t=6、5、4時,對應四邊形分別是平行四邊形、直角梯形、等腰梯形;

(3)∵D為拋物線的頂點坐標為:D(1,3
3
),
過D作DN⊥OB于N,則DN=3
3
,AN=3,
∴AD=
32+(3
3
)2
=6,
∴∠DAO=60°,
∴∠COB=60°,OC=OB,△OCB是等邊三角形.
則OB=OC=AD=6,OP=t,BQ=2t,
∴OQ=6-2t(0<t<3)
過P作PE⊥OQ于E,則PE=
3
2
t
,
∴SBCPQ=
1
2
×6×3
3
-
1
2
×(6-2t)×
3
2
t,
=
3
2
(t-
3
2
)2+
63
8
3
,
t=
3
2
時,SBCPQ的面積最小值為
63
8
3
,

(4)當△AOD∽△OQP,
AO
QO
=
AD
OP
,
∵AO=2,AD=6,QO=6-2t,OP=t,
2
6-2t
=
6
t
,
解得:t=
18
7
,
當△AOD∽△OPQ,
AO
OP
=
AD
QO
,
2
t
=
6
6-2t
,
解得:t=
6
5
,
故t=
6
5
18
7
時以O,P,Q為頂點的三角形與△OAD相似.
點評:本題考查了二次函數(shù)的綜合應用以及相似三角形的判定與性質(zhì)、平行四邊形、直角梯形、等腰梯形的判定等知識,將二次函數(shù)的圖象與解析式相結(jié)合處理問題、解決問題是考查重點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標,若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標.(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數(shù)關系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應的函數(shù)關系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數(shù)關系式;
(2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
(1)求此拋物線的解析式;
(2)①當x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
(4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標.

查看答案和解析>>

同步練習冊答案