【題目】一個正方體的六個面上分別標(biāo)有1、2、3、4、5、6,根據(jù)圖中從各個方向看到的數(shù)字,解答下面的問題:“?”處的數(shù)字是_____

【答案】1

【解析】

根據(jù)正方體的特征,已知12,3,4,5相鄰,31,2,5,6相鄰;

根據(jù)以上分析可得1 6相對, 34相對, 從而可知25相對, 再結(jié)合左面兩個圖, 即可得出“?” 處的數(shù)字.

:根據(jù)正方體的特征知, 相鄰的面一定不是對面,因為12,3,4,5相鄰,

所以只能和6相對.因為31, 2, 5, 6相鄰, 只能和4相對,又因為34已經(jīng)相對了,

所以只能是25相對, 即面 “1” 與面 “6” 相對, “2” 與面“5”

, “3” 與面 “4” 相對, 16, 25,34.因此第三個正方體下面是2, 左面是

4, “?” 處只能是16,結(jié)合左面兩個圖看,應(yīng)為1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點(diǎn)EBC上一點(diǎn),且DE=DA,AF⊥DE,垂足為點(diǎn)F,在下列結(jié)論中,不一定正確的是( 。

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD的邊長為4,以AB所在的直線為x軸,以AD所在的直線為y軸建立平面直角坐標(biāo)系反比例函數(shù)的圖象與CD交于E點(diǎn),與CB交于F點(diǎn).

(1)求證:

(2)若的面積為6,求反比例函數(shù)的解析式;

(3)在(2)的條件下,將沿x軸的正方向平移1個單位后得到,如圖2,線段相交于點(diǎn)M,線段BC相交于點(diǎn)N.與正方形ABCD的重疊部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:如圖(1),在數(shù)軸上A示的數(shù)為a,B點(diǎn)表示的數(shù)為b,則點(diǎn)A到點(diǎn)B的距離記為AB.線段AB的長可以用右邊的數(shù)減去左邊的數(shù)表示,即AB=b-a.

解決問題:如圖(2),數(shù)軸上點(diǎn)A表示的數(shù)是-4,點(diǎn)B表示的數(shù)是2,點(diǎn)C表示的數(shù)是6

(1)若數(shù)軸上有一點(diǎn)D,且AD=3,求點(diǎn)D表示的數(shù)

(2)點(diǎn)A、B、C開始在數(shù)軸上運(yùn)動,若點(diǎn)A以每秒1個單位長度的速度向左運(yùn)動,同時,點(diǎn)B和點(diǎn)C分別以每秒2個單位長度和3個單位長度的速度向右運(yùn)動,假設(shè)t秒鐘過后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.求點(diǎn)A表示的數(shù)(用含t的代數(shù)式表示),BC等于多少(用含t的代數(shù)式表示).

(3)請問:3BCAB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點(diǎn)為D,E,F,ADBE的長為方程的兩個根,則△ABC的周長為 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,EBC的中點(diǎn),連接AE并延長交DC的延長線于點(diǎn)F.

(1)求證:AB=CF;

(2)連接DE,若AD=2AB,求證:DEAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,ACB90°,點(diǎn)DE分別在AB,AC上,CEBC,連接CD,將線段CD繞點(diǎn)C按順時針方向旋轉(zhuǎn)90°后得CF,連接EF.

(1)補(bǔ)充完成圖形;

(2)EFCD,求證:BDC90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一副三角尺的直角頂點(diǎn)疊放在點(diǎn)C處,∠D=30°,B=45°,求:

(1)若∠DCE=35°,求∠ACB的度數(shù);(2)若∠ACB=120°,求∠DCE的度數(shù).

(3)猜想∠ACB和∠DCE的關(guān)系,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y= x2 x﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右邊),與y軸交于點(diǎn)C.

(1)求點(diǎn)A,B,C的坐標(biāo);
(2)點(diǎn)D是此拋物線上的點(diǎn),點(diǎn)E是其對稱軸上的點(diǎn),求以A,B,D,E為頂點(diǎn)的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點(diǎn)P,使得△ACP是等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案