【題目】材料:一般地,若(且),那么叫做以為底的對數(shù),記作,比如指數(shù)式可以轉化為對數(shù)式,對數(shù)式可以轉化為指數(shù)式.
根據(jù)以上材料,解決下列問題:
(1)計算: , , ;
(2)觀察(1)中的三個數(shù),猜測: (且,,),并加以證明這個結論;
(3)已知:,求和的值(且).
【答案】(1)2,4,6;(2),證明見解析;(3)10,15.
【解析】
(1)根據(jù)22=4,24=16,26=32寫成對數(shù)式即可;
(2)設logaM=x,logaN=y,根據(jù)對數(shù)的定義可表示為指數(shù)式為:ax=M,ay=N,據(jù)此計算即可;
(3)由loga3=5,得a5=3,再根據(jù)同底數(shù)冪的乘法法則計算即可.
(1)∵22=4,24=16,26=32,
∴log24=2;log216=4;log264=6.
故答案為:2;4;6;
(2)設logaM=x,logaN=y,
則ax=M,ay=N,∴MN=axay=ax+y,
根據(jù)對數(shù)的定義,x+y=logaMN,
即logaM+logaN=logaMN.
故答案為:logaMN.
(3)由loga3=5,得a5=3.
∵9=3×3=a5a5=a10,27=3×3×3=a5a5a5=a15,
∴根據(jù)對數(shù)的定義,loga9=10,loga27=15.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示.線段AB、DC分別表示甲、乙兩座建筑物的高.AB⊥BC,DC⊥BC,兩建筑物間距離BC=30米,若甲建筑物高AB=28米,在A點測得D點的仰角α=45°,則乙建筑物高DC=______米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖 1 所示,△ ABC 和△ AEF 為等邊三角形,點 E 在△ ABC 內部,且 E 到點 A、B、C 的距離分別為 3、4、5,求∠AEB 的度數(shù).
(2)如圖 2,在△ ABC 中,∠CAB=90°,AB=AC,M、N 為 BC 上的兩點,且∠MAN=45°,將△ABM繞點A逆時針旋轉90°,得到△ACF.求證:MN= NC+BM(提示:旋轉前后的圖形全等)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=3,連接DE.
(1)DE的長為 .
(2)動點P從點B出發(fā),以每秒1個單位的速度沿BC﹣CD﹣DA向終點A運動,設點P運動的時間為t秒,求當t為何值時,△ABP和△DCE全等?
(3)若動點P從點B出發(fā),以每秒1個單位的速度僅沿著BE向終點E運動,連接DP.設點P運動的時間為t秒,是否存在t,使△PDE為等腰三角形?若存在,請直接寫出t的值;否則,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,面積為4的正方形OABC的頂點O與坐標原點重合,邊OA、OC分別在x軸、y軸的正半軸上,點B、P都在函數(shù)y=(x>0)的圖象上,過動點P分別作軸x、y軸的平行線,交y軸、x軸于點D、E.設矩形PDOE與正方形OABC重疊部分圖形的面積為S,點P的橫坐標為m.
(1)求k的值;
(2)用含m的代數(shù)式表示CD的長;
(3)求S與m之間的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有甲、乙兩種糖果,原價分別為每千克a元和b元.根據(jù)調查,將兩種糖果按甲種糖果x千克與乙種糖果y千克的比例混合,取得了較好的銷售效果.現(xiàn)在糖果價格有了調整:甲種糖果單價下降15%,乙種糖果單價上漲20%,但按原比例混合的糖果單價恰好不變,則等于( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D為等邊△ABC中邊BC的中點,在邊DA的延長線上取一點E,以CE為邊、在CE的左下方作等邊△CEF,連結AF.若AB=4,AF=,則CF的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖中的圖象(折線ABCDE)描述了一汽車在某一直道上的行駛過程中,汽車離出發(fā)地的距離s(千米)和行駛時間t(小時)之間的函數(shù)關系.根據(jù)圖中提供的信息,給出下列說法:
①汽車共行駛了120千米;
②汽車在行駛途中停留了0.5小時;
③汽車在整個行駛過程中的平均速度為千米/時;
④汽車自出發(fā)后3小時至4.5小時之間行駛的速度在逐漸減少.
其中正確的說法有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:CE是△ABC的外角∠ACD的平分線,且CE交BA的延長線于點E.
(1)如圖1,求證∠BAC=∠B+2∠E;
(2)如圖2,過點A作AF⊥BC,垂足為點F,若∠DCE=2∠CAF,∠B=2∠E,求∠BAC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com