【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A-2,-3),B10),C3,4),若以A、BC、D為頂點(diǎn)的四邊形是平行四邊形,則點(diǎn)D的坐標(biāo)為__________________.

【答案】故答案是:(-1,2)或(7,6)或(-5,-6)

【解析】

以AB和BC為邊、CA和BA為邊、AC和CB為邊,三種情況進(jìn)行討論.

如圖:以AB和BC為邊的平行四邊形,根據(jù)平移的性質(zhì)知:,易求得頂點(diǎn)D的坐標(biāo)為(-1,2);

如圖:以CA和BA為邊的平行四邊形,根據(jù)平移的性質(zhì)知:,易求得頂點(diǎn)D的坐標(biāo)為(7,6);

如圖:以CA和CB為邊的平行四邊形,根據(jù)平移的性質(zhì)知:,易求得頂點(diǎn)D的坐標(biāo)為(-5,-6)

故答案是:(-1,2)或(7,6)或(-5,-6)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓內(nèi)接四邊形中,,,則四邊形的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1:在四邊形ABCD中,ABADBAD120°,BADC90°E、F分別是BC、CD上的點(diǎn).且∠EAF60°.探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.

小王同學(xué)探究此問題的方法是,延長(zhǎng)FD到點(diǎn)G,使DGBE.連結(jié)AG,先證明ABE≌△ADG,再證明AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是   ;

探索延伸:

如圖2,若在四邊形ABCD中,ABAD,BD180°E、F分別是BC、CD上的點(diǎn),且∠EAFBAD,上述結(jié)論是否仍然成立,并說明理由;

實(shí)際應(yīng)用:

如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°A處,艦艇乙在指揮中心南偏東70°B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn)1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一水果店主分兩批購進(jìn)某一種水果,第一批所用資金為2400元,因天氣原因,水果漲價(jià),第二批所用資金是2700元,但由于第二批單價(jià)比第一批單價(jià)每箱多10元,以致購買的數(shù)量比第一批少25%

1)該水果店主購進(jìn)第一批這種水果的單價(jià)是多少元?

2)該水果店主計(jì)兩批水果的售價(jià)均定為每箱40元,實(shí)際銷售時(shí)按計(jì)劃無損耗售完第一批后,發(fā)現(xiàn)第二批水果品質(zhì)不如第一批,于是該店主將售價(jià)下降a%銷售,結(jié)果還是出現(xiàn)了20%的損耗,但這兩批水果銷售完后仍賺了不低于1716元,求a的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)(1)閱讀理解:

如圖1,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,連接BE(或?qū)ⅰ鰽CD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三邊的關(guān)系即可判斷中線AD的取值范圍是_________;

(2)問題解決:

如圖2,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證BE+CF>EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】文學(xué)社為解本校學(xué)生對(duì)本社一種報(bào)紙四個(gè)版面的喜歡情況,隨機(jī)抽取部分學(xué)生做了一次問卷調(diào)查,要求學(xué)生選出自己喜歡的個(gè)版面,將調(diào)查數(shù)據(jù)進(jìn)行了整理、繪制成部分統(tǒng)計(jì)圖如下

各版面選擇人數(shù)的扇形統(tǒng)計(jì)圖 各版面選擇人數(shù)的條形統(tǒng)計(jì)圖

請(qǐng)根據(jù)圖中信息,解答下列問題:

(1)該調(diào)查的樣本容量為 , ,第一版對(duì)應(yīng)扇形的圓心角為 ;

(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校有名學(xué)生,請(qǐng)你估計(jì)全校學(xué)生中最喜歡第一版的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l:y=x+6交x、y軸分別為A、B兩點(diǎn),C點(diǎn)與A點(diǎn)關(guān)于y軸對(duì)稱.動(dòng)點(diǎn)P、Q分別在線段AC、AB上(點(diǎn)P不與點(diǎn)A、C重合),滿足BPQ=BAO

(1)點(diǎn)A坐標(biāo)是 ,點(diǎn)B的坐標(biāo) ,BC=

(2)當(dāng)點(diǎn)P在什么位置時(shí),APQ≌△CBP,說明理由.

(3)當(dāng)PQB為等腰三角形時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校舉辦了學(xué)生國學(xué)經(jīng)典大賽.比賽項(xiàng)目為:.唐詩;.宋詞;.論語;.三字經(jīng).比賽形式分單人組雙人組”.

(1)小麗參加單人組,她從中隨機(jī)抽取一個(gè)比賽項(xiàng)目,恰好抽中三字經(jīng)的概率是多少?

(2)小紅和小明組成一個(gè)小組參加雙人組比賽,比賽規(guī)則是:同一小組的兩名隊(duì)員的比賽項(xiàng)目不能相同,且每人只能隨機(jī)抽取一次,則小紅和小明都沒有抽到論語的概率是多少?請(qǐng)用畫樹狀圖或列表的方法進(jìn)行說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】法國數(shù)學(xué)家柯西于1813年在拉格朗日、高斯的基礎(chǔ)上徹底證明了《費(fèi)馬多邊形數(shù)定理》,其主要突破在五邊形數(shù)的證明上.如圖為前幾個(gè)五邊形數(shù)的對(duì)應(yīng)圖形,請(qǐng)據(jù)此推斷,第10個(gè)五邊形數(shù)應(yīng)該為(  ),第2018個(gè)五邊形數(shù)的奇偶性為( 。

A. 145;偶數(shù) B. 145;奇數(shù) C. 176;偶數(shù) D. 176;奇數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案