【題目】文學社為解本校學生對本社一種報紙四個版面的喜歡情況,隨機抽取部分學生做了一次問卷調(diào)查,要求學生選出自己喜歡的個版面,將調(diào)查數(shù)據(jù)進行了整理、繪制成部分統(tǒng)計圖如下

各版面選擇人數(shù)的扇形統(tǒng)計圖 各版面選擇人數(shù)的條形統(tǒng)計圖

請根據(jù)圖中信息,解答下列問題:

(1)該調(diào)查的樣本容量為 , ,第一版對應扇形的圓心角為 ;

(2)請你補全條形統(tǒng)計圖;

(3)若該校有名學生,請你估計全校學生中最喜歡第一版的人數(shù).

【答案】(1)50,36,108.(2)補圖見解析;(3)240人.

【解析】

試題分析:(1)設(shè)樣本容量為x.由題意=10%,求出x即可解決問題;

(2)求出第三版”的人數(shù)為50-15-5-18=12,畫出條形圖即可;

(3)用樣本估計總體的思想解決問題即可.

試題解析(1)設(shè)樣本容量為x.

由題意=10%,

解得x=50,

a=×100%=36%,

第一版”對應扇形的圓心角為360°×=108°(2)“第三版”的人數(shù)為50-15-5-18=12,

(2)條形圖如圖所示,

(3)該校有1000名學生,估計全校學生中最喜歡“第三版”的人數(shù)約為1000××100%=240人.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知m,nm<n)是關(guān)于x的方程(xa)(xb)=2的兩根,若a<b,則下列判斷正確的是

A. a<m<b<n B. m<a<n<b

C. a<m<n<d D. m<a<b<n

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有長為30米的籬笆,圍成中間隔有一道籬笆的長方形的花圃,且花圃的長可借用一段墻體(墻體的最大可使用長度a=10米).設(shè)花圃的一邊AB長為x米,面積為y平方米.

(1)求yx的函數(shù)關(guān)系式并寫出自變量x的取值范圍;

(2)如果所圍成的花圃的面積為63平方米,試求寬AB的長;

(3)按題目的設(shè)計要求,   (填不能)圍成面積為80平方米的花圃.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=30°,AC=BC,以BC為直徑的⊙O與邊AB交于點D,過D作DE⊥AC于E.

(1)證明:DE為⊙O的切線.

(2)若⊙O的半徑為2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點A-2,-3),B1,0),C3,4),若以A、B、C、D為頂點的四邊形是平行四邊形,則點D的坐標為__________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一枚運載火箭從距雷達站C5km的地面O處發(fā)射,當火箭到達點A,B時,在雷達站C處測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.求A,B兩點間的距離(結(jié)果精確到0.1km).

(參考數(shù)據(jù):sin34°=0.56,cos34°=0.83,tan34°=0.67.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系xOy中,點A、B的橫坐標分別為a、a+2,二次函數(shù)y=﹣x2+(m﹣2)x+2m的圖象經(jīng)過點A、B,且a、m滿足2a﹣m=d(d為常數(shù)).

(1)若一次函數(shù)y1=kx+b的圖象經(jīng)過A、B兩點.

①當a=1、d=﹣1時,求k的值;

②若yx的增大而減小,求d的取值范圍;

(2)當d=﹣4a﹣2、a﹣4時,判斷直線ABx軸的位置關(guān)系,并說明理由;

(3)點A、B的位置隨著a的變化而變化,設(shè)點A、B運動的路線與y軸分別相交于點C、D,線段CD的長度會發(fā)生變化嗎?如果不變,求出CD的長;如果變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,DAB的中點,E,F(xiàn)分別是AC,BC上的點(點E不與端點A,C重合),且AE=CF.

(1)求證:△ADE≌△CDF

(2)如圖2連接EF并取EF的中點O,連接DO并延長至點G,使GO=OD,連接DE,DF,GE,GF.求證:四邊形EDFG是正方形.

(3)當點E在什么位置時,四邊形EDFG的面積最?直接寫出點E的位置及四邊形EDFG面積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BE,CD分別為其角平分線且交于點O.

(1)當∠A60°時,求∠BOC的度數(shù);

(2)當∠A100°時,求∠BOC的度數(shù);

(3)當∠Aα時,求∠BOC的度數(shù)

查看答案和解析>>

同步練習冊答案