【題目】現(xiàn)有、兩種商品,已知買一件商品要比買一件商品少元,用元全部購買商品的數(shù)量與用元全部購買商品的數(shù)量相同.

(1)、兩種商品每件各是多少元?

(2)如果小亮準(zhǔn)備購買、兩種商品共件,總費(fèi)用不超過元,且不低于元,問有幾種購買方案,哪種方案費(fèi)用最低?

【答案】(1)商品每件元,則商品每件.2)方案③費(fèi)用最低.

【解析】

1)可設(shè)商品每件元,由買一件商品要比買一-商品少可得商品每件元,根據(jù)題意列出分式方程求解;

(2)設(shè)購買商品,則購買商品共件,由總費(fèi)用的范圍可列出關(guān)于a的不等式組,求出a的范圍取整數(shù),可得購買方案,求出每種方案的費(fèi)用即知最低費(fèi)用.

解:(1)設(shè)商品每件元,則商品每件

列方程:

經(jīng)檢驗(yàn):是原方程的解

所以商品每件元,則商品每件.

(2)設(shè)購買商品,則購買商品共

列不等式組:

解得:

取整數(shù):,.

有三種方案:

商品,則購買商品件;費(fèi)用:

商品,則購買商品件;費(fèi)用:

商品,則購買商品件;費(fèi)用:

所以方案③費(fèi)用最低.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2(a≠0)與一次函數(shù)y=kx﹣2的圖象相交于A、B兩點(diǎn),如圖所示,其中A(﹣1,﹣1),求OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校興趣小組根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖像和性質(zhì)進(jìn)行探究,過程如下:

1)自變量x的取值范圍是全體實(shí)數(shù),xy的幾組對(duì)應(yīng)值如下表:

x

...

-4

-3

-2

-1

0

1

2

3

4

...

y

...

3

2.5

m

1.5

1

1.5

2

2.5

3

...

其中m= .

(2)如圖,在平面直角坐標(biāo)系xoy中,描出了上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),面出該函數(shù)的圖象:

(3)根據(jù)面出的函數(shù)圖象特征,仿照示例,完成下列表格中的消數(shù)變化規(guī)律,

序號(hào)

函數(shù)圖象特征

函數(shù)變化規(guī)律

示例1

y軸左側(cè),函數(shù)圖象呈下降狀態(tài)

當(dāng)x<0時(shí),yx的增大而減小

y軸右側(cè),函數(shù)圖象呈上升狀態(tài)

示例2

函數(shù)圖象經(jīng)過點(diǎn)( -4,3)

當(dāng)x=-4時(shí),y=3

函數(shù)圖象的最低點(diǎn)是(0,1)

(4)當(dāng)2<y<3時(shí),x的取值范圖為:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知等邊ABC中,DAC的中點(diǎn),EBC延長線上的一點(diǎn),且CE=CD,DMBC,垂足為M.

(1)求∠E的度數(shù).

(2)求證:MBE的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,分別平分的外角、內(nèi)角、外角.以下結(jié)論:①;②;③平分;④;⑤.其中正確的結(jié)論有( ).

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)”是我國流傳了上千年的傳統(tǒng)節(jié),全國各地舉行了豐富多彩的紀(jì)念活動(dòng),為了繼承傳統(tǒng),減緩學(xué)生考前的心理壓力,某班學(xué)生組織了一次拔河比賽,裁判員讓兩隊(duì)隊(duì)長用“石頭、剪刀、布”的手勢(shì)方式選擇場(chǎng)地位置,規(guī)則:石頭勝剪刀,剪刀勝布,布勝石頭,手勢(shì)相同則再?zèng)Q勝負(fù).

(1)用列表或畫樹狀圖法,列出甲、乙兩隊(duì)手勢(shì)可能出現(xiàn)的情況;

(2)裁判員的這種做法對(duì)甲、乙雙方公平嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,點(diǎn)D、E、F分別在AB、BC、AC BECF,AD+ECAB

1)求證:DEF是等腰三角形;

2)當(dāng)∠A40°時(shí),求∠DEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某自行車制造廠開發(fā)了一款新式自行車,計(jì)劃月份生產(chǎn)安裝輛,由于抽調(diào)不出足夠的熟練工來完成新式自行車的安裝,工廠決定招聘一些新工人;他們經(jīng)過培訓(xùn)后也能獨(dú)立進(jìn)行安裝.調(diào)研部門發(fā)現(xiàn): 名熟練工和名新工人每日可安裝輛自行車; 名熟練工和名新工人每日可安裝輛自行車。

(1)每名熟練工和新工人每日分別可以安裝多少輛自行車?

(2)如果工廠招聘名新工人().使得招聘的新工人和抽調(diào)熟練工剛好能完成月份()的安裝任務(wù),那么工廠有哪幾種新工人的招聘方案?

(3)該自行車關(guān)于輪胎的使用有以下說明:本輪胎如安裝在前輪,安全行使路程為千公里;如安裝在后輪,安全行使路程為千公里.請(qǐng)問一對(duì)輪胎能行使的最長路程是多少千公里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知正方形 ABCO,邊長是 4,點(diǎn) D(a0),以 AD 為邊在AD 的右側(cè)作等腰 RtADE,∠ADE90°,連接 OE,則 OE 的最小值為__________________

查看答案和解析>>

同步練習(xí)冊(cè)答案