【題目】為了響應(yīng)政府提出的“綠色長(zhǎng)垣,文明長(zhǎng)垣”的號(hào)召,某小區(qū)決定開始綠化,要在一塊四邊形ABCD空地上種植草皮.如圖,經(jīng)測(cè)量∠B90°,AB6米,BC8米,CD24米,AD26米,若每平方米草皮需要300元,問需要投入多少元?

【答案】需要投入43200元.

【解析】

仔細(xì)分析題目,需要求得四邊形的面積才能求得結(jié)果.連接AC,在直角三角形ABC中可求得AC的長(zhǎng),由AC、CDAD的長(zhǎng)度關(guān)系可得三角形ACD為一直角三角形,AD為斜邊;由此看,四邊形ABCDRtABCRtACD構(gòu)成,則容易求解.

連接AC,

∵∠B90°

∴在RtABC中,由勾股定理得AC10(米),

ACD中,∵AC2+CD2102+242262AD2

∴△ACD是直角三角形,且∠ACD90°,

S四邊形ABCDSABC+SACD

ABBC+ACCD

×6×8+×10×24

24+120

144(平方米),

所以需費(fèi)用300×14443200(元).

∴需要投入43200元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點(diǎn)O位于坐標(biāo)原點(diǎn),斜邊AB垂直于x軸,頂點(diǎn)A在函數(shù)y1=(x0)的圖象上,頂點(diǎn)B在函數(shù)y2=(x0)的圖象上,ABO=30°,則=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,橫坐標(biāo)為a的點(diǎn)A在反比例函數(shù)y1(x>0)的圖象上,點(diǎn)A′與點(diǎn)A關(guān)于點(diǎn)O對(duì)稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點(diǎn)A′.

(1)設(shè)a=2,點(diǎn)B(4,2)在函數(shù)y1、y2的圖象上.

①分別求函數(shù)y1、y2的表達(dá)式;

②直接寫出使y1>y2>0成立的x的范圍;

(2)如圖①,設(shè)函數(shù)y1、y2的圖象相交于點(diǎn)B,點(diǎn)B的橫坐標(biāo)為3a,AA'B的面積為16,求k的值;

(3)設(shè)m=,如圖②,過點(diǎn)AADx軸,與函數(shù)y2的圖象相交于點(diǎn)D,以AD為一邊向右側(cè)作正方形ADEF,試說明函數(shù)y2的圖象與線段EF的交點(diǎn)P一定在函數(shù)y1的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的周長(zhǎng)是20cm,以AB,AD為邊向外作正方形ABEF和正方形ADGH,若正方形ABEFADGH的面積之和為68cm2,那么矩形ABCD的面積是( 。

A. 9cm2 B. 16cm2 C. 21cm2 D. 24cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)探究:

有A,B兩個(gè)不透明的布袋,A布袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1和2.B布袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字-1,-2和-3.小明從A布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為x,再?gòu)腂布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為y,這樣就確定點(diǎn)的一個(gè)坐標(biāo)為

(1)用列表或畫樹狀圖的方法寫出點(diǎn)Q的所有可能坐標(biāo);

(2)求點(diǎn)Q落在直線上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小米手機(jī)越來越受到大眾的喜愛,各種款式相繼投放市場(chǎng),某店經(jīng)營(yíng)的A款手機(jī)去年銷售總額為50000元,今年每部銷售價(jià)比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少

A,B兩款手機(jī)的進(jìn)貨和銷售價(jià)格如下表:

A款手機(jī)

B款手機(jī)

進(jìn)貨價(jià)格

1100

1400

銷售價(jià)格

今年的銷售價(jià)格

2000

1)今年A款手機(jī)每部售價(jià)多少元?

2)該店計(jì)劃新進(jìn)一批A款手機(jī)和B款手機(jī)共60部,且B款手機(jī)的進(jìn)貨數(shù)量不超過A款手機(jī)數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批手機(jī)獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△OAB的頂點(diǎn)坐標(biāo)分別為O0,0)、A3,2)、B20),將這三個(gè)頂點(diǎn)的坐標(biāo)同時(shí)擴(kuò)大到原來的2倍,得到對(duì)應(yīng)點(diǎn)D、E、F

(1)在圖中畫出△DEF;

(2)點(diǎn)E是否在直線OA上?為什么?

(3)OAB與△DEF______位似圖形(填“是”或“不是”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一些完全相同的正三角形按如圖所示規(guī)律擺放,第一個(gè)圖形有1個(gè)正三角形,第二個(gè)圖形有5個(gè)正三角形,第三個(gè)圖形有12個(gè)正三角形,,按此規(guī)律排列下去,第六個(gè)圖形中正三角形的個(gè)數(shù)是( 。

A. 35 B. 41 C. 45 D. 51

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C、D是以AB為直徑的O上的點(diǎn),,弦CD交AB于點(diǎn)E.

(1)當(dāng)PB是O的切線時(shí),求證:∠PBD=∠DAB;

(2)求證:BC2﹣CE2=CEDE;

(3)已知OA=4,E是半徑OA的中點(diǎn),求線段DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案