22、(1)如圖1,求作一點(diǎn)P,使P到兩條直線的距離相等,且使PA=PB;(保留作圖痕跡)
(2)如圖2,在△ABC中,AB=AC,點(diǎn)M、N在邊BC上,且AM=AN,試判斷BM和CN的大小關(guān)系,并說明理由.
分析:①連接AB,分別作角平分線和中垂線,交點(diǎn)P即可;
②過點(diǎn)A作AP⊥BC于P,根據(jù)等腰三角形的性質(zhì),高、中線、角平分線三線合一,求證BP=CP,PM=PN即可證明.
解答:解:①

②BM=CN.
過點(diǎn)A作AP⊥BC于P,
∵AB=AC,AP⊥BC,
∴BP=CP,
又∵AM=AN,AP⊥MN,
∴PM=PN,
∴BP-MP=CP-NP.
即BM=CN.
點(diǎn)評:此題主要考查學(xué)生對角平分線的性質(zhì)、線段垂直平分線的性質(zhì)和等腰三角形的性質(zhì)的理解和掌握,此題涉及到的知識(shí)點(diǎn)較多,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過程:
(1)實(shí)踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問題,請予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長為l求l的最大值.
II•如圖④,過原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過程:
(1)實(shí)踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問題,請予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長為l求l的最大值.
II•如圖④,過原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:湖南省中考真題 題型:解答題

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過程:
(1)實(shí)踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請你求出拋物線的解析式;
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m,為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問題,請予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸上,設(shè)矩形ABCD的周長為l求l的最大值;
II.如圖④,過原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q,問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年河北省唐山市古冶區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過程:
(1)實(shí)踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問題,請予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長為l求l的最大值.
II•如圖④,過原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年河北省承德三中中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過程:
(1)實(shí)踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問題,請予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長為l求l的最大值.
II•如圖④,過原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案