【題目】早黑寶是我省農(nóng)科院研制的優(yōu)質(zhì)新品種,在我省被廣泛種植.清徐縣某葡萄種植基地2016年種植早黑寶”1002018早黑寶的種植面積達(dá)到225畝.

(1)求該基地這兩年早黑寶種植面積的平均增長率;

(2)市場調(diào)查發(fā)現(xiàn),當(dāng)早黑寶售價為20/千克時,每天能售出200千克,售價每降低1元,每天可多售出50千克,為了推廣宣傳,基地決定降價促銷,已知該基地早黑寶的平均成本價為12/千克,若使銷售早黑寶每天獲利1800元,則售價應(yīng)降低多少元?

【答案】(1)50%;(2)售價應(yīng)降價2元.

【解析】

(1)設(shè)該基地這兩年早黑寶種植面積的平均增長率為x,根據(jù)題意列出關(guān)于x的一元二次方程,然后求解方程即可;

(2)設(shè)售價應(yīng)降低y元,則每天可售出(200+50y)千克,根據(jù)題意列出關(guān)于y的一元二次方程,然后求解方程即可.

解:(1)設(shè)該基地這兩年早黑寶種植面積的平均增長率為x,

根據(jù)題意得:100(1+x)2=225,

解得:x1=0.5=50%,x2=﹣2.5(不合題意,舍去).

答:該基地這兩年早黑寶種植面積的平均增長率為50%.

(2)設(shè)售價應(yīng)降低y元,則每天可售出(200+50y)千克,

根據(jù)題意得:(20﹣12﹣y)(200+50y)=1800,

整理得:y2﹣4y+4=0,

解得:y1=y2=2.

答:售價應(yīng)降價2元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科技開發(fā)公司研制出一種新型產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價定為3000元.在該產(chǎn)品的試銷期間,為了促銷,鼓勵商家購買該新型產(chǎn)品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時,每件按3000元銷售;若一次購買該種產(chǎn)品超過10件時,每多購買一件,所購買的全部產(chǎn)品的銷售單價均降低10元,但銷售單價均不低于2600元.

(1)商家一次購買這種產(chǎn)品多少件時,銷售單價恰好為2600元?

(2)設(shè)商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲的利潤為y元,求y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

(3)該公司的銷售人員發(fā)現(xiàn):當(dāng)商家一次購買產(chǎn)品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲的利潤最大,公司應(yīng)將最低銷售單價調(diào)整為多少元(其它銷售條件不變)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新華商場銷售某種冰箱,每臺進(jìn)價為2500元,銷售價為2900元,平均每天能售出8臺;調(diào)查發(fā)現(xiàn),當(dāng)銷售價每降低50元,平均每天就能多售出4臺.商場要想使這種冰箱的銷售利潤平均每天達(dá)到5000元,每臺冰箱應(yīng)該降價多少元?若設(shè)每臺冰箱降價x元,根據(jù)題意可列方程( 。

A. (2900-x)(8+4×)=5000 B. (400-x)(8+4×)=5000

C. 4(2900-x)(8+)=5000 D. 4(400-x)(8+)=5000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車銷售公司經(jīng)銷某品牌款汽車,隨著汽車的普及,其價格也在不斷下降.今年5月份款汽車的售價比去年同期每輛降價1萬元,如果賣出相同數(shù)量的款汽車,去年銷售額為100萬元,今年銷售額只有90萬元.

1)今年5月份款汽車每輛售價多少萬元?

2)為了增加收入,汽車銷售公司決定再經(jīng)銷同品牌的款汽車,已知款汽車每輛進(jìn)價為7.5萬元,款汽車每輛進(jìn)價為6萬元,公司預(yù)計(jì)用不多于105萬元且不少于102萬元的資金購進(jìn)這兩款汽車共15輛,有幾種進(jìn)貨方案?

3)按照(2)中兩種汽車進(jìn)價不變,如果款汽車每輛售價為8萬元,為打開款汽車的銷路,公司決定每售出一輛款汽車,返還顧客現(xiàn)金萬元,要使(2)中所有的方案獲利相同,值應(yīng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=AB.求證:∠B=30°.

請?zhí)羁胀瓿上铝凶C明.

證明:如圖,作Rt△ABC的斜邊上的中線CD,

CD=AB=AD (   ).

∵AC=AB,

∴AC=CD=AD △ACD是等邊三角形.

∴∠A=   °.

∴∠B=90°﹣∠A=30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在 RtABC 中,∠C90°,∠B30°,AD 平分∠BAC

1)求證:點(diǎn) D AB 的垂直平分線上;

2)若 CD=2,求 BC 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】纜車不僅提高了景點(diǎn)接待游客的能力,而且解決了登山困難者的難題.如圖,當(dāng)纜車經(jīng)過點(diǎn)A到達(dá)點(diǎn)B它走過了700米.由B到達(dá)山頂D,它又走過了700米.已知線路AB與水平線的夾角16°,線路BD與水平線的夾角β20°點(diǎn)A的海拔是126米.求山頂D的海拔高度(畫出設(shè)計(jì)圖,寫出解題思路即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校選學(xué)生會正副主席,需要從甲班的2名男生1名女生(男生用A,B表示,女生用a表示)和乙班的1名男生1名女生(男生用C表示,女生用b表示)共5人中隨機(jī)選出2名同學(xué).

(1)用樹狀圖或列表法列出所有可能情形;

(2)求2名同學(xué)來自不同班級的概率;

(3)求2名同學(xué)恰好11女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示.下列結(jié)論:①abc0;②2ab0;③4a2b+c0;④(a+c2b2其中正確的個數(shù)有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案