【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線交于點E,過點E作MN∥BC交AB于M,交AC于N,若△ABC 、△AMN周長分別為13cm和8cm.
(1)求證:△MBE為等腰三角形;
(2)線段BC的長.
【答案】(1)詳見解析;(2)5cm
【解析】
(1)由BE平分∠ABC,得∠MBE=∠EBC,再由MN∥BC得∠MEB=∠EBC,所以∠MBE=∠MEB,由等角對等邊可得MB=ME;
(2)同理可證NE=NC,△ABC的周長為AB+AC+BC,通過等量代換可得△AMN的周長為AB+AC,兩者之差即為BC的長.
解:(1)∵BE平分∠ABC
∴∠MBE=∠EBC,
∵MN∥BC
∴∠MEB=∠EBC
∴∠MBE=∠MEB,
∴MB=ME
∴△MBE為等腰三角形
(2)同理可證NE=NC,
∴△AMN的周長=AM+ME+EN+AN=(AM+MB)+(NC+AN)=AB+AC=8cm
又∵△ABC的周長=AB+AC+BC=13cm
∴BC=13-8=5cm
科目:初中數(shù)學 來源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結論共有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作圖題(不寫作法)已知:如圖,在平面直角坐標系中.
(1)作出△ABC關于y軸對稱的△A1B1C1,并寫出△A1B1C1三個頂點的坐標;
(2)求△ABC的面積;
(3)在x軸上畫點P,使PA+PC最。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,AB=DB,BE平分∠ABC,交AC邊于點E,連接DE.
(1)求證:△ABE≌△DBE;
(2)若∠A=100°,∠C=50°,求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用直尺和圓規(guī)畫一個角等于已知角,是運用了“全等三角形的對應角相等”這一性質(zhì),其全等的依據(jù)是( )
A.SAS B.ASA C.AAS D.SSS
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若點P從點A出發(fā)以每秒1cm的速度沿折線A﹣C﹣B﹣A運動,設運動時間為t秒(t>0).
(1)若點P在AC上,且滿足PA=PB時,求出此時t的值;
(2)若點P恰好在∠BAC的角平分線上(但不與A點重合),求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 B,C 為圓心,以大于BC 的長為半徑作弧,兩弧相交于兩點 M,N;②作直線 MN 交 AB 于點 D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為
A.90°B.95°C.105°D.110°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點C,點A、B在直線l同側,BD⊥l,AE⊥l,垂足分別為D、E.求證:△AEC≌△CDB;
(2)類比探究:如圖2,Rt△ABC中,∠ACB=90°,AC=6,將斜邊AB繞點A逆時針旋轉(zhuǎn)90°至AB′,連接B′C,求△AB′C的面積.
(3)拓展提升:如圖3,等邊△EBC中,EC=BC=4cm,點O在BC上,且OC=3cm,動點P從點E沿射線EC以2cm/s速度運動,連結OP,將線段OP繞點O逆時針旋轉(zhuǎn)120°得到線段OF.要使點F恰好落在射線EB上,求點P運動的時間ts.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點C作CF平行于BA交PQ于點F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
(3)若AD=3,AE=5,則菱形AECF的面積是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com