【題目】如圖,將矩形ABCD沿AF折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,過(guò)點(diǎn)E作EG∥CD交舡于點(diǎn)G,連接DG.
(1)求證:四邊形EFDG是菱形;
(2) 求證: ;
(3)若AG=6,EG=2,求BE的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)BE的長(zhǎng)為.
【解析】(1)先依據(jù)翻折的性質(zhì)和平行線的性質(zhì)證明∠DGF=∠DFG,從而得到GD=DF,接下來(lái)依據(jù)翻折的性質(zhì)可證明DG=GE=DF=EF;
(2)連接DE,交AF于點(diǎn)O.由菱形的性質(zhì)可知GF⊥DE,OG=OF=GF,接下來(lái),證明△DOF∽△ADF,由相似三角形的性質(zhì)可證明DF2=FOAF,于是可得到GE、AF、FG的數(shù)量關(guān)系;
(3)過(guò)點(diǎn)G作GH⊥DC,垂足為H.利用(2)的結(jié)論可求得FG=4,然后再△ADF中依據(jù)勾股定理可求得AD的長(zhǎng),然后再證明△FGH∽△FAD,利用相似三角形的性質(zhì)可求得GH的長(zhǎng),最后依據(jù)BE=AD﹣GH求解即可.
解:(1)證明:∵GE∥DF,
∴∠EGF=∠DFG.
∵由翻折的性質(zhì)可知:GD=GE,DF=EF,∠DGF=∠EGF,
∴∠DGF=∠DFG.
∴GD=DF.
∴DG=GE=DF=EF.
∴四邊形EFDG為菱形.
(2)EG2=GFAF.
理由:如圖1所示:連接DE,交AF于點(diǎn)O.
∵四邊形EFDG為菱形,
∴GF⊥DE,OG=OF=GF.
∵∠DOF=∠ADF=90°,∠OFD=∠DFA,
∴△DOF∽△ADF.
∴,即DF2=FOAF.
∵FO=GF,DF=EG,
∴EG2=GFAF.
(3)如圖2所示:過(guò)點(diǎn)G作GH⊥DC,垂足為H.
∵EG2=GFAF,AG=6,EG=2,
∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.
解得:FG=4,F(xiàn)G=﹣10(舍去).
∵DF=GE=2,AF=10,
∴AD==4.
∵GH⊥DC,AD⊥DC,
∴GH∥AD.
∴△FGH∽△FAD.
∴,即=.
∴GH=.
∴BE=AD﹣GH=4﹣=.
“點(diǎn)睛”本題考查的是四邊形與三角形的綜合應(yīng)用,解題應(yīng)用了矩形的性質(zhì),菱形的性質(zhì)和判定、相似三角形的判定和性質(zhì),掌握矩形的性質(zhì)定理和相似三角形的判定定理、性質(zhì)定理是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸為直線x=-1,點(diǎn)B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正確的結(jié)論有( 。﹤(gè).
A. 3B. 4C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有A、B兩組卡片共5張,A組的三張分別寫(xiě)有數(shù)字2,4,6,B組的兩張分別寫(xiě)有3,5.它們除了數(shù)字外沒(méi)有任何區(qū)別,
(1)隨機(jī)從A組抽取一張,求抽到數(shù)字為2的概率;
(2)隨機(jī)地分別從A組、B組各抽取一張,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個(gè)游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則對(duì)甲乙雙方公平嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘游輪在A處測(cè)得北偏東45°的方向上有一燈塔B.游輪以20海里/時(shí)的速度向正東方向航行2小時(shí)到達(dá)C處,此時(shí)測(cè)得燈塔B在C處北偏東15°的方向上,求A處與燈塔B相距多少海里?(結(jié)果精確到1海里,參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD的對(duì)角線BD延長(zhǎng)線上的一點(diǎn),連接PA,過(guò)點(diǎn)P作PE⊥PA交BC的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)E作EF⊥BP于點(diǎn)F,則下列結(jié)論中:①PA=PE;②CE=PD;③BF﹣PD=BD;④S△PEF=S△ADP,正確的是___(填寫(xiě)所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,E為AB的中點(diǎn),F為AD上一點(diǎn),EF交AC于點(diǎn)G,,,,則AC的長(zhǎng)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,點(diǎn)在邊上,的延長(zhǎng)線交于點(diǎn),下列結(jié)論錯(cuò)誤的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC.則下列結(jié)論:①abc<0;②>0;③ac-b+1=0;④OA·OB=-.其中結(jié)論正確的是____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD為⊙O的直徑,CD⊥AB,垂足為點(diǎn)F,AO⊥BC,垂足為點(diǎn)E,OA=6.
(1)求∠C的大小;
(2)求陰影部分的面積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com