【題目】某商城銷售一種進(jìn)價為101件的飾品,經(jīng)調(diào)查發(fā)現(xiàn),該飾品的銷售量(件)與銷售單價(元)滿足函數(shù),設(shè)銷售這種飾品每天的利潤為(元).

1)求之間的函數(shù)表達(dá)式;

2)當(dāng)銷售單價定為多少元時,該商城獲利最大?最大利潤為多少?

3)在確保顧客得到優(yōu)惠的前提下,該商城還要通過銷售這種飾品每天獲利750元,該商城應(yīng)將銷售單價定為多少?

【答案】1;(2)銷售單價為30時,該商城獲利最大,最大利潤為800;(3)單價定為25

【解析】

1)利用利潤=每件的利潤×數(shù)量即可表示出之間的函數(shù)表達(dá)式;

2)根據(jù)二次函數(shù)的性質(zhì)即可求出最大值;

3)令,求出x值即可.

解:(1

2)由(1)知,

,

∴當(dāng)時,有最大值,最大值為800

即銷售單價為30時,該商城獲利最大,最大利潤為800.

3)令,即

解得

因為要確保顧客得到優(yōu)惠

所以不符合題意,舍去

所以在確保顧客得到優(yōu)惠的前提下,該商城還要通過銷售這種飾品每天獲利750元,該商城應(yīng)將銷售單價定為25

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把一條拋物線先向上平移1個單位長度,然后繞原點(diǎn)旋轉(zhuǎn)180°得到拋物線yx2+5x+6.則原拋物線的頂點(diǎn)坐標(biāo)是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A13)為雙曲線上的一點(diǎn),連接AO并延長與雙曲線在第三象限交于點(diǎn)B,M軸正半軸一上點(diǎn),連接MA并延長與雙曲線交于點(diǎn)N,連接BM、BN,已知MBN的面積為,則點(diǎn)N的坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將命題“在同圓中,相等的圓心角所對的弧相等,所對的弦也相等”改寫成“已知……求證……”的形式,下列正確的是( )

A.已知:在⊙O中,∠AOB=COD,弧AB=CD.求證:AB=CD

B.已知:在⊙O中,∠AOB=COD,弧AB=BC.求證:AD=BC

C.已知:在⊙O中,∠AOB=COD.求證:弧AD=BC,AD=BC

D.已知:在⊙O中,∠AOB=COD.求證:弧AB=CDAB=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為2,中心為M,⊙O的半徑為r,圓心O在射線BD上運(yùn)動,⊙O與邊CD僅有一個公共點(diǎn)E.

1)如圖1,若圓心O在線段MD上,點(diǎn)M在⊙O上,OM=DE,判斷直線AD與⊙O的位置關(guān)系,并說明理由;

2)如圖2,⊙O與邊AD交于點(diǎn)F,連接MF,過點(diǎn)MMF的垂線與邊CD交于點(diǎn)G,若,設(shè)點(diǎn)O與點(diǎn)M之間的距離為,EG=,當(dāng)時,求的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB3,AC4,BC6DBC上一點(diǎn),CD2,過點(diǎn)D的直線lABC分成兩部分,使其所分成的三角形與ABC相似,若直線lABC另一邊的交點(diǎn)為點(diǎn)P,則DP________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙OAC為⊙O的直徑,D的中點(diǎn),過點(diǎn)DDEAC,交BC的延長線于點(diǎn)E

1)判斷DE與⊙O的位置關(guān)系,并說明理由;

2)若CE,AB6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)和一次函數(shù)的圖象相交于第一象限內(nèi)的點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為1.過點(diǎn)AABx軸于點(diǎn)B,△AOB的面積為1.

1)求反比例函數(shù)和一次函數(shù)的解析式.

2)若一次函數(shù)的圖象與x軸相交于點(diǎn)C,求∠ACO的度數(shù).

3)結(jié)合圖象直接寫出:當(dāng)0時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在玩轉(zhuǎn)盤游戲時,把兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤AB分成4等份、3等份的扇形區(qū)域,并在每一小區(qū)域內(nèi)標(biāo)上數(shù)字(如圖所示),指針的位置固定.游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,若指針?biāo)竷蓚區(qū)域的數(shù)字之和為3的倍數(shù),甲勝;若指針?biāo)竷蓚區(qū)域的數(shù)字之和為4的倍數(shù)時,乙勝.如果指針落在分割線上,則需要重新轉(zhuǎn)動轉(zhuǎn)盤.

1)試用列表或畫樹形圖的方法,求甲獲勝的概率;

2)請問這個游戲規(guī)則對甲、乙雙方公平嗎?試說明理由.

查看答案和解析>>

同步練習(xí)冊答案