【題目】如圖1,點(diǎn)P、Q分別是等邊△ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ、CP交于點(diǎn)M.
(1)求證:△ABQ≌△CAP;
(2)如圖1,當(dāng)點(diǎn)P、Q分別在AB、BC邊上運(yùn)動(dòng)時(shí),∠QMC變化嗎?若變化,請(qǐng)說理由;若不變,求出它的度數(shù).
(3)如圖2,若點(diǎn)P、Q在分別運(yùn)動(dòng)到點(diǎn)B和點(diǎn)C后,繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠QMC=度.(直接填寫度數(shù))

【答案】
(1)證明:∵△ABC是等邊三角形

∴∠ABQ=∠CAP,AB=CA,

又∵點(diǎn)P、Q運(yùn)動(dòng)速度相同,

∴AP=BQ,

在△ABQ與△CAP中,

,

∴△ABQ≌△CAP(SAS)


(2)解:點(diǎn)P、Q在運(yùn)動(dòng)的過程中,∠QMC不變.

理由:∵△ABQ≌△CAP,

∴∠BAQ=∠ACP,

∵∠QMC=∠ACP+∠MAC,

∴∠QMC=∠BAQ+∠MAC=∠BAC=60°


(3)120
【解析】解:(3)∵△ABQ≌△CAP, ∴∠BAQ=∠ACP,
∵∠QMC=∠BAQ+∠APM,
∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°.
故答案為:120°.
(1)根據(jù)等邊三角形的性質(zhì),利用SAS證明△ABQ≌△CAP;(2)由△ABQ≌△CAP根據(jù)全等三角形的性質(zhì)可得∠BAQ=∠ACP,從而得到∠QMC=60°;(3)由△ABQ≌△CAP根據(jù)全等三角形的性質(zhì)可得∠BAQ=∠ACP,從而得到∠QMC=120°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】n是方程x2﹣2x﹣1=0的一個(gè)根,則代數(shù)式2n﹣n2的值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2+x﹣3=0的根的情況是(
A.有兩個(gè)不相等的實(shí)數(shù)根
B.有兩個(gè)相等的實(shí)數(shù)根
C.只有一個(gè)實(shí)數(shù)根
D.沒有實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:a5÷a3=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例反數(shù)y=(x>0)的圖象如圖所示,點(diǎn)B在圖象上,連接OB并延長(zhǎng)到點(diǎn)A,使AB=OB,過點(diǎn)A作AC∥y軸交y=(x>0)的圖象于點(diǎn)C,連接BC、OC,S△BOC=3,則k=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P、Q是反比例函數(shù)y= 圖像上的兩點(diǎn),PA⊥y軸于點(diǎn)A,QN⊥x軸于點(diǎn)N,作PM⊥x軸于點(diǎn)M,QB⊥y軸于點(diǎn)B,連接PB、QM,△ABP的面積記為S1 , △QMN的面積記為S2 , 則S1S2 . (填“>”或“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC與△ECD都是等邊三角形,AB≠EC,下列結(jié)論中:①BE=AD;②∠BOD=120°;③OA=OD.正確的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A城出發(fā)前往B城,在整個(gè)行駛過程中,汽車離開A城的距離y(km)與行駛時(shí)間t(h)的函數(shù)圖象如圖所示,下列說法正確的有( )
①甲車的速度為50km/h ②乙車用了3h到達(dá)B城
③甲車出發(fā)4h時(shí),乙車追上甲車 ④乙車出發(fā)后經(jīng)過1h或3h兩車相距50km.

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是正方形ABCD的對(duì)角線,BC=2,邊BC在其所在的直線上平移,將通過平移得到的線段記為PQ,連接PA、QD,并過點(diǎn)Q作QOBD,垂足為O,連接OA、OP.

(1)請(qǐng)直接寫出線段BC在平移過程中,四邊形APQD是什么四邊形?

(2)請(qǐng)判斷OA、OP之間的數(shù)量關(guān)系和位置關(guān)系,并加以證明;

(3)在平移變換過程中,設(shè)y=SOPB,BP=x(0x2),求y與x之間的函數(shù)關(guān)系式,并求出y的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案